scispace - formally typeset
Proceedings ArticleDOI

A Realistic Power Consumption Model for Wireless Sensor Network Devices

Qin Wang, +2 more
- Vol. 1, pp 286-295
Reads0
Chats0
TLDR
A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented and it is shown that whenever single hop routing is possible it is almost always more power efficient than multi-hop routing.
Abstract
A realistic power consumption model of wireless communication subsystems typically used in many sensor network node devices is presented. Simple power consumption models for major components are individually identified, and the effective transmission range of a sensor node is modeled by the output power of the transmitting power amplifier, sensitivity of the receiving low noise amplifier, and RF environment. Using this basic model, conditions for minimum sensor network power consumption are derived for communication of sensor data from a source device to a destination node. Power consumption model parameters are extracted for two types of wireless sensor nodes that are widely used and commercially available. For typical hardware configurations and RF environments, it is shown that whenever single hop routing is possible it is almost always more power efficient than multi-hop routing. Further consideration of communication protocol overhead also shows that single hop routing will be more power efficient compared to multi-hop routing under realistic circumstances. This power consumption model can be used to guide design choices at many different layers of the design space including, topology design, node placement, energy efficient routing schemes, power management and the hardware design of future wireless sensor network devices

read more

Citations
More filters
Dissertation

Self Organising Cognitive Radio Networks

TL;DR: It is shown that under certain conditions, dual hop clustered networks can potentially be more energy efficient that single hop transmission, but care needs to be taken to ensure that the backhaul links within the network do not become bottlenecks at high offered traffic levels.
Journal ArticleDOI

Wireless Sensor Node Energy-harvesting Simulator Using Java Threads

TL;DR: 노드들이 환경으로부터 수확한다고 효과를 보여주는 것은 매우 중요한 일이다.
Journal ArticleDOI

The Study on Power Consumption Models for Low-Power Wireless Communications

TL;DR: This work proposes L – model, based on total channel-loss, that is more suitable for transmission energy consumption optimization in the sense of different modulation and coding techniques than d – models.
Dissertation

High performance faster-than-nyquist signaling

TL;DR: This thesis considers the use of FTN signaling for the uplink of broadband wireless systems employing SC-FDE based on the Iterative Block with Decision Feedback Equalization (IB-DFE) receiver with a simple scheduled access Hybrid Automatic Repeat reQuest (H-ARQ) specially designed taking into account the characteristics ofFTN signals.
Posted Content

Energy-Efficient Data Collection in Clustered Wireless Sensor Networks employing Distributed DCT

TL;DR: A energy-efficient data collection method is proposed in which an integration between Discrete Cosine Transform matrix and clustering in wireless sensor networks (WSNs) is exploited and all sensory data from the sensor network can be recovered based on the large coefficients received at the BS.
References
More filters
Proceedings ArticleDOI

Energy-efficient communication protocol for wireless microsensor networks

TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.

Energy-efficient communication protocols for wireless microsensor networks

TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Journal ArticleDOI

An application-specific protocol architecture for wireless microsensor networks

TL;DR: This work develops and analyzes low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality.
Journal Article

The design of CMOS radio-frequency integrated circuits, 2nd edition

TL;DR: This expanded and thoroughly revised edition of Thomas H. Lee's acclaimed guide to the design of gigahertz RF integrated circuits features a completely new chapter on the principles of wireless systems.
Book

The Design of CMOS Radio-Frequency Integrated Circuits

TL;DR: In this article, the authors present an expanded and thoroughly revised edition of Tom Lee's acclaimed guide to the design of gigahertz RF integrated circuits, which is packed with physical insights and design tips, and includes a historical overview of the field in context.
Related Papers (5)