scispace - formally typeset
Journal ArticleDOI

A two-species model of aeolian sand transport

Bruno Andreotti
- 10 Jul 2004 - 
- Vol. 510, pp 47-70
Reads0
Chats0
TLDR
In this article, a model based on a discrete number of states is derived, which solves the problems of self-consistent and unstable solutions to the transport of sand by wind, which results from the equilibrium between the erosion of grains dragged by the flow and the resulting slow down of the wind velocity.
Abstract
The transport of sand by wind results from the equilibrium between the erosion of grains dragged by the flow and the resulting slow down of the wind velocity. The dynamical mechanisms governing the saturation of the sand flux are investigated theoretically. We first demonstrate that previous models, based on the assumption that all the grains have the same trajectory, are either not self-consistent or lead to unstable solutions. A model based on a discrete number of states is derived, which solves these problems. Two well-defined species of grain appear, which correspond to saltons (high-energy grains) and reptons (grains ejected from the sand bed by the impact of saltons). They play specific roles: the negative feedback of the transport on the wind is limited to the reptation layer while most of the transport is due to saltation. The model is further simplified, benefiting from the existence of these two species and the dependencies of the threshold velocity, the saturated flux, the aerodynamic roughness and the saturation length are derived and compared to experimental measurements.

read more

Citations
More filters
Journal ArticleDOI

Field Evidence for the Upwind Velocity Shift at the Crest of Low Dunes

TL;DR: In this article, the upwind phase shift of velocity with respect to topography is found to be in quantitative agreement with the prediction of hydrodynamical linear analysis for turbulent flows with first-order closures.
Journal ArticleDOI

The atmospheric snow-transport model: SnowDrift3D

TL;DR: In this article, a high-resolution, atmospheric snow-transport model, called SnowDrift3D, is presented for the first time, which uses unsteady wind fields (spatial resolution of up to 2 m) computed with an atmospheric computational fluid dynamics model.
Journal ArticleDOI

Transverse instability of megaripples

Abstract: As a result of their inherent differences in stability, sand ripples and megaripples exhibit variations in terms of their wavelengths and grain-size distributions (unimodal for sand ripples and bimodal for megaripples). While sand ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small megaripple undulations to grow with time. The origin of the instability is due to variations in megaripple height, variations that do not diminish over time, and due to the inverse dependence of ripple drift velocity on the height. Thus, the taller regions of ripples will move more slowly than the adjacent, shorter portions, an outcome that promotes further perturbation growth. We show an example based on fi eld work of the transverse instability of megaripples. The instability growth rate depends on the difference between the heights of the different segments of the megaripple. In contrast to the underlying instability of megaripples, normal sand ripples are essentially stable and are not affected by transverse perturbations, instead reacting quickly to the wind, which tends to smooth ripple height irregularities. The transverse instability of megaripples derives from the composition of their crests, which comprise coarse particles that allow initial perturbations in ripple height to grow further. The results suggest a physical mechanism for the transverse instability of megaripples and new insight into the spatial patterns of sand ripples.
Journal ArticleDOI

The Cessation Threshold of Nonsuspended Sediment Transport Across Aeolian and Fluvial Environments

TL;DR: In this paper, the authors derived the bulk transport cessation threshold by extrapolating the transport load as a function of the dimensionless fluid shear stress (Shields number') to the vanishing transport limit.
Journal ArticleDOI

Formation of gravel-mantled megaripples on Earth and Mars: Insights from the Argentinean Puna and wind tunnel experiments

TL;DR: Pumice and lithic clasts from gravel-mantled megaripples in the Argentinean Puna, an analog to Martian large ripples and Transverse Aeolian Ridges (TARs), were put in a boundary layer wind tunnel to derive threshold speeds for various stages of motion of the component clasts and observe incipient bedform development as discussed by the authors.
References
More filters
Book

The Physics of Blown Sand and Desert Dunes

R. A. Bagnold
TL;DR: The physics of blown sand and desert dunes, The physics of windblown sand and sand dunes, this paper, and the physics of dunes in the Middle East and Africa.
Journal ArticleDOI

The Physics of Blown Sand and Desert Dunes

H. Heywood
- 01 Oct 1941 - 
TL;DR: Bagnold as mentioned in this paper described his travels in the Egyptian and Libyan Deserts, and combined the results of experimental research in a wind tunnel with personal observations in the desert, and the explanations of many desert features vitally affecting such operations will interest a wide range of readers.
Journal ArticleDOI

Saltation of uniform grains in air

TL;DR: In this paper, the interaction between a turbulent wind and the motion of uniform saltating grains of sand or soil, so massive as to fail to enter into suspension, is examined on the basis of two complementary hypotheses.
Journal ArticleDOI

Soil Transport by Winds on Mars

TL;DR: In this paper, a semi-empirical formula is developed for estimating the total amount of surface material moving in eolian saltation, surface traction, and suspension on the surface of Mars, and the ratio of final particle speed to the particle threshold friction speed is found to be several times that of saltation on earth.
Book ChapterDOI

Wind modification and bed response during saltation of sand in air

TL;DR: In this article, a model of eolian sediment transport was constructed, which is a special case of sand-sized mineral grains subjected to moderate winds: saltation, and the model consists of four compartments corresponding to aerodynamic entrainment, grain trajectories, grain-bed impacts, and momentum extraction from the wind.