scispace - formally typeset
Open AccessJournal ArticleDOI

A unified framework for model-based clustering

TLDR
A unified framework for probabilistic model-based clustering based on a bipartite graph view of data and models that highlights the commonalities and differences among existing model- based clustering algorithms is presented.
Abstract
Model-based clustering techniques have been widely used and have shown promising results in many applications involving complex data. This paper presents a unified framework for probabilistic model-based clustering based on a bipartite graph view of data and models that highlights the commonalities and differences among existing model-based clustering algorithms. In this view, clusters are represented as probabilistic models in a model space that is conceptually separate from the data space. For partitional clustering, the view is conceptually similar to the Expectation-Maximization (EM) algorithm. For hierarchical clustering, the graph-based view helps to visualize critical/important distinctions between similarity-based approaches and model-based approaches. The framework also suggests several useful variations of existing clustering algorithms. Two new variations---balanced model-based clustering and hybrid model-based clustering---are discussed and empirically evaluated on a variety of data types.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Machine learning

TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.

The Self-Organizing Map

TL;DR: An overview of the self-organizing map algorithm, on which the papers in this issue are based, is presented in this article, where the authors present an overview of their work.
Journal ArticleDOI

Survey: Graph clustering

TL;DR: This survey overviews the definitions and methods for graph clustering, that is, finding sets of ''related'' vertices in graphs, and presents global algorithms for producing a clustering for the entire vertex set of an input graph.
Journal ArticleDOI

A Comprehensive Survey of Clustering Algorithms

TL;DR: This review paper begins at the definition of clustering, takes the basic elements involved in the clustering process, such as the distance or similarity measurement and evaluation indicators, into consideration, and analyzes the clustered algorithms from two perspectives, the traditional ones and the modern ones.
Journal ArticleDOI

Clustering on the Unit Hypersphere using von Mises-Fisher Distributions

TL;DR: A generative mixture-model approach to clustering directional data based on the von Mises-Fisher distribution, which arises naturally for data distributed on the unit hypersphere, and derives and analyzes two variants of the Expectation Maximization framework for estimating the mean and concentration parameters of this mixture.
References
More filters
Book

The Nature of Statistical Learning Theory

TL;DR: Setting of the learning problem consistency of learning processes bounds on the rate of convergence ofLearning processes controlling the generalization ability of learning process constructing learning algorithms what is important in learning theory?
Journal ArticleDOI

Estimating the Dimension of a Model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.

Statistical learning theory

TL;DR: Presenting a method for determining the necessary and sufficient conditions for consistency of learning process, the author covers function estimates from small data pools, applying these estimations to real-life problems, and much more.