scispace - formally typeset
Open AccessBook

Adhesion and Adhesives: Science and Technology

Reads0
Chats0
TLDR
In this article, Deryaguin et al. proposed a diffusion theory for adhesives and showed that it can be used to model interfacial diffusion and surface tension gradients, as well as the influence of surface roughness.
Abstract
1 Introduction.- Bibliography of general background books.- 2 Interfacial contact.- 2.1 Introduction.- 2.2 Surface tension.- 2.3 Wetting equilibria.- 2.3.1 Theoretical considerations.- 2.3.2 Experimental considerations.- 2.3.3 Effect of surface roughness.- 2.4 Surface and interfacial free energies.- 2.4.1 Low-energy surfaces.- 2.4.2 High-energy surfaces.- 2.4.3 Orientation at interfaces.- 2.4.4 Applicability to adhesives technology.- 2.5 Kinetics of wetting.- 2.5.1 Surface tension gradients.- 2.5.2 Dynamic contact angles.- 2.5.3 The influence of surface roughness.- 2.5.4 Time-temperature considerations.- 2.6 The bonding operation.- 2.6.1 Air entrapment.- 2.6.2 The bonding environment.- 2.7 Concluding remarks.- References.- 3 Mechanisms of adhesion.- 3.1 Introduction.- 3.2 Mechanical interlocking.- 3.2.1 Introduction.- 3.2.2 Plating of plastics.- 3.2.3 Mechanically roughened substrates.- 3.2.4 Chemically roughened substrates.- 3.2.5 The role of localized energy dissipation.- 3.2.6 Summary.- 3.3 Diffusion theory.- 3.3.1 Introduction.- 3.3.2 Modelling interfacial diffusion.- 3.3.3 Direct experimental evidence.- 3.3.4 Criticisms of the diffusion theory.- 3.3.5 Welding of plastics.- 3.3.6 Polymer/metal interfaces.- 3.3.7 Summary.- 3.4 Electronic theory.- 3.4.1 Introduction.- 3.4.2 Deryaguin's studies.- 3.4.3 Weaver's studies.- 3.4.4 Criticisms of the electronic theory.- 3.4.5 Summary.- 3.5 Adsorption theory.- 3.5.1 Introduction.- 3.5.2 Secondary force interactions.- 3.5.3 Donor-1 Introduction.- Bibliography of general background books.- 2 Interfacial contact.- 2.1 Introduction.- 2.2 Surface tension.- 2.3 Wetting equilibria.- 2.3.1 Theoretical considerations.- 2.3.2 Experimental considerations.- 2.3.3 Effect of surface roughness.- 2.4 Surface and interfacial free energies.- 2.4.1 Low-energy surfaces.- 2.4.2 High-energy surfaces.- 2.4.3 Orientation at interfaces.- 2.4.4 Applicability to adhesives technology.- 2.5 Kinetics of wetting.- 2.5.1 Surface tension gradients.- 2.5.2 Dynamic contact angles.- 2.5.3 The influence of surface roughness.- 2.5.4 Time-temperature considerations.- 2.6 The bonding operation.- 2.6.1 Air entrapment.- 2.6.2 The bonding environment.- 2.7 Concluding remarks.- References.- 3 Mechanisms of adhesion.- 3.1 Introduction.- 3.2 Mechanical interlocking.- 3.2.1 Introduction.- 3.2.2 Plating of plastics.- 3.2.3 Mechanically roughened substrates.- 3.2.4 Chemically roughened substrates.- 3.2.5 The role of localized energy dissipation.- 3.2.6 Summary.- 3.3 Diffusion theory.- 3.3.1 Introduction.- 3.3.2 Modelling interfacial diffusion.- 3.3.3 Direct experimental evidence.- 3.3.4 Criticisms of the diffusion theory.- 3.3.5 Welding of plastics.- 3.3.6 Polymer/metal interfaces.- 3.3.7 Summary.- 3.4 Electronic theory.- 3.4.1 Introduction.- 3.4.2 Deryaguin's studies.- 3.4.3 Weaver's studies.- 3.4.4 Criticisms of the electronic theory.- 3.4.5 Summary.- 3.5 Adsorption theory.- 3.5.1 Introduction.- 3.5.2 Secondary force interactions.- 3.5.3 Donor-acceptor interactions.- 3.5.4 Primary force interactions.- 3.5.5 Molecular complexes.- 3.6 Concluding remarks.- References.- 4 Surface pretreatments.- 4.1 Introduction.- 4.2 Low-energy surfaces.- 4.2.1 Introduction.- 4.2.2 Fluorocarbon polymers.- 4.2.3 Polyolefins.- 4.2.4 Other plastic substrates.- 4.2.5 Plastic laminate materials.- 4.2.6 Rubbers.- 4.2.7 Plasma treatments.- 4.3 High-energy surfaces.- 4.3.1 Introduction.- 4.3.2 Solvent cleaning.- 4.3.3 Mechanical abrasion.- 4.3.4 Chemical treatments.- 4.3.5 Primers.- 4.3.6 Plasma treatments.- 4.4 Concluding remarks.- References.- 5 Hardening of the adhesive.- 5.1 Introduction.- 5.2 Hardening by solvent or dispersing medium removal.- 5.2.1 Introduction.- 5.2.2 Examples.- 5.3 Hardening by cooling.- 5.3.1 Introduction.- 5.3.2 Examples.- 5.4 Hardening by chemical reaction.- 5.4.1 Introduction.- 5.4.2 Examples.- 5.5 Non-hardening adhesives.- 5.6 Concluding remarks.- References.- 6 Mechanical behaviour of adhesive joints.- 6.1 Introduction.- 6.2 Common joint designs.- 6.3 Standard test methods.- 6.4 Stresses in adhesive joints.- 6.4.1 Introduction.- 6.4.2 Engineering properties of the adhesive.- 6.4.3 Axially loaded butt or poker-chip joints.- 6.4.4 Single lap joints.- 6.4.5 Double lap joints.- 6.4.6 Modified lap joints.- 6.4.7 Peel joints.- 6.4.8 Miscellaneous joint geometries.- 6.4.9 Internal stresses.- 6.4.10 Comparison of joint test geometries.- 6.5 Non-destructive testing.- 6.5.1 Introduction.- 6.5.2 Inspection of pretreated substrates.- 6.5.3 Inspection of adhesive joints.- 6.6 Concluding remarks.- References.- 7 Fracture mechanics of adhesive joints.- 7.1 Introduction.- 7.2 Theoretical considerations.- 7.2.1 Introduction.- 7.2.2 Energy balance approach.- 7.2.3 Stress intensity factor approach.- 7.2.4 Width effects.- 7.2.5 Relationships between G and K.- 7.3 Experimental considerations.- 7.3.1 Introduction.- 7.3.2 Flexible joints.- 7.3.3 Rigid joints.- 7.4 Typical values of Gc and Kc.- 7.5 Effect of joint geometry.- 7.5.1 Introduction.- 7.5.2 Flexible peel joints.- 7.5.3 Structural adhesives.- 7.5.4 Modes of loading.- 7.6 Effect of rate and temperature.- 7.6.1 Introduction.- 7.6.2 Rubbery adhesives.- 7.6.3 Rigid adhesives.- 7.7 Concluding remarks.- References.- 8 The service life of adhesive joints.- 8.1 Introduction.- 8.2 Fatigue.- 8.2.1 Dynamic fatigue.- 8.2.2 Static fatigue.- 8.3 Environmental attack.- 8.3.1 Introduction.- 8.3.2 General observations.- 8.3.3 Mechanisms of attack.- 8.3.4 Kinetics of attack.- 8.3.5 The role of stress.- 8.3.6 Service life predictions.- 8.4 Concluding remarks.- References.- Notations.- English alphabet.- Greek alphabet.- Abbreviations.- Author index.

read more

Citations
More filters
Journal ArticleDOI

Adhesive force of a single gecko foot-hair

TL;DR: The first direct measurements of single setal force are reported by using a two-dimensional micro-electro-mechanical systems force sensor and a wire as a force gauge and revealed that a seta is ten times more effective at adhesion than predicted from maximal estimates on whole animals.
Journal ArticleDOI

A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties

TL;DR: In this article, the authors discuss the development of the advanced polymer composite material applications in the building and civil/structural infrastructure over the past three to four decades and highlight the important in-service research areas which are necessary to improve the understanding of the behavior of FRP materials and FRP structural components.
Journal ArticleDOI

Toughening mechanisms of nanoparticle-modified epoxy polymers

TL;DR: In this paper, an epoxy resin, cured with an anhydride, has been modified by the addition of silica nanoparticles, and the measured modulus was compared to theoretical models, and good agreement was found.
Journal ArticleDOI

Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties

TL;DR: In this paper, the surface functionalization of DGEBA layer was found to effectively improve the compatibility and dispersion of GO sheets in epoxy matrix, and increased glass transition temperature and thermal stability was also observed in the dynamic mechanical properties and thermo-gravimetric analysis.
Journal ArticleDOI

Adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials: Adhesives, adhesion theories and surface pretreatment

TL;DR: A review of surface pretreatment methods for the adhesively bonded joints can be found in this article, where the authors discuss the influence of surface pre-treatment and aging conditions on the short and long-term strength of adhesive bonds.