scispace - formally typeset
Open AccessJournal ArticleDOI

Aerial observations of the evolution of ice surface conditions during summer

Reads0
Chats0
TLDR
In the summer of 1998, a program of aerial photography was carried out at the main site of the Surface Heat Budget of the Arctic Ocean (SHEBA) program at altitudes ranging from 1220 to 1830 m as mentioned in this paper.
Abstract
[1] During spring and summer, the Arctic pack ice cover undergoes a dramatic change in surface conditions, evolving from a uniform, reflective surface to a heterogeneous mixture of bare ice, melt ponds, and leads. This transformation is accompanied by a significant decrease in areally averaged, integrated albedo. The key factors contributing to this reduction in albedo are the melting of the snow cover, the formation and growth of the melt ponds, and the increase in the open water fraction. To document these changes and enable quantification of the evolution of the ponds throughout the melt season, a program of aerial photography was carried out at the main site of the Surface Heat Budget of the Arctic Ocean (SHEBA) program. A modified square pattern, 50 km on a side, surrounding the SHEBA site was flown at altitudes ranging from 1220 to 1830 m. Twelve of these aerial survey photography flights were completed between 20 May and 4 October 1998. The flights took place at approximately weekly intervals at the height of the melt season, with occasional gaps as long as 3 weeks during August and September due to persistent low clouds and fog. In addition, flights on 17 May and 25 July were flown in a closely spaced pattern designed to provide complete photo coverage of a 10-km square centered on the SHEBA main site. Images from all flights were scanned at high resolution and archived on CD-ROMs. Using personal computer image processing software, we have measured ice concentration, melt pond coverage, statistics on size and shape of melt ponds, lead fraction, and lead perimeter for the summer melt season. The ponds began forming in early June, and by the height of the melt season in early August the pond fraction exceeded 0.20. The temporal evolution of pond fraction displayed a rapid increase in mid-June, followed by a sharp decline 1 week later. After the decline, the pond fraction gradually increased until mid-August when the ponds began to freeze. By mid-September the surface of virtually all of the ponds had frozen. The open water fraction varied between 0.02 and 0.05 from May through the end of July. In early August the open water fraction jumped to 0.20 in just a few days owing to ice divergence. Melt ponds were ubiquitous during summer, with number densities increasing from 1000 to 5000 ponds per square kilometer between June and August.

read more

Citations
More filters
Journal ArticleDOI

Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics

TL;DR: In this article, a supraglacial lake-depth retrieval function is developed, based on the correspondence between moderate-resolution imaging spectroradiometer (MODIS) reflectance and water depth measured during raft surveys.
Journal Article

Winter snow cover on the sea ice of the Arctic Ocean at the Surface Heat Budget of the Arctic Ocean (SHEBA): Temporal evolution and spatial variability : The surface heat budget of arctic ocen (SHEBA)

TL;DR: In this article, the evolution and spatial distribution of the snow cover on the sea ice of the Arctic Ocean was observed during the Surface Heat Budget of Arctic Ocean (SHEBA) project, and two basic types of snow were present: depth hoar and wind slab.
Journal ArticleDOI

Derivation of melt pond coverage on Arctic sea ice using MODIS observations

TL;DR: In this paper, a surface reflectance product is used to derive the daily melt pond cover over sea ice in the Beaufort/Chukchi Sea region through the summer of 2004.
Journal ArticleDOI

Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean

TL;DR: In this paper, a version of the state-of-the-art Weather Research and Forecasting model (WRF) has been developed for polar applications, known as "Polar WRF".
Journal ArticleDOI

Parametrizing turbulent exchange over summer sea ice and the marginal ice zone

TL;DR: In this article, a bulk turbulent flux algorithm was proposed for predicting the surface fluxes of momentum and sensible and latent heat over the Arctic Ocean during summer from readily measured or modelled quantities.
References
More filters
Journal ArticleDOI

Transient Responses of a Coupled Ocean–Atmosphere Model to Gradual Changes of Atmospheric CO2. Part I. Annual Mean Response

TL;DR: In this article, the authors investigated the response of a climate model to a gradual increase or decrease of atmospheric carbon dioxide in a general circulation model of the coupled atmosphere-ocean-land surface system with global geography and seasonal variation of insulation.
Journal ArticleDOI

The Optical Properties of Ice and Snow in the Arctic Basin

TL;DR: In this article, the authors measured light transmission and reflection on first-year sea ice near Point Barrow, Alaska, and on multi-year ice near Fletcher's Ice Island in the Beaufort Sea (lat. 84° N., long. 77°W.).
Related Papers (5)