scispace - formally typeset
Open AccessJournal ArticleDOI

Aerial observations of the evolution of ice surface conditions during summer

Reads0
Chats0
TLDR
In the summer of 1998, a program of aerial photography was carried out at the main site of the Surface Heat Budget of the Arctic Ocean (SHEBA) program at altitudes ranging from 1220 to 1830 m as mentioned in this paper.
Abstract
[1] During spring and summer, the Arctic pack ice cover undergoes a dramatic change in surface conditions, evolving from a uniform, reflective surface to a heterogeneous mixture of bare ice, melt ponds, and leads. This transformation is accompanied by a significant decrease in areally averaged, integrated albedo. The key factors contributing to this reduction in albedo are the melting of the snow cover, the formation and growth of the melt ponds, and the increase in the open water fraction. To document these changes and enable quantification of the evolution of the ponds throughout the melt season, a program of aerial photography was carried out at the main site of the Surface Heat Budget of the Arctic Ocean (SHEBA) program. A modified square pattern, 50 km on a side, surrounding the SHEBA site was flown at altitudes ranging from 1220 to 1830 m. Twelve of these aerial survey photography flights were completed between 20 May and 4 October 1998. The flights took place at approximately weekly intervals at the height of the melt season, with occasional gaps as long as 3 weeks during August and September due to persistent low clouds and fog. In addition, flights on 17 May and 25 July were flown in a closely spaced pattern designed to provide complete photo coverage of a 10-km square centered on the SHEBA main site. Images from all flights were scanned at high resolution and archived on CD-ROMs. Using personal computer image processing software, we have measured ice concentration, melt pond coverage, statistics on size and shape of melt ponds, lead fraction, and lead perimeter for the summer melt season. The ponds began forming in early June, and by the height of the melt season in early August the pond fraction exceeded 0.20. The temporal evolution of pond fraction displayed a rapid increase in mid-June, followed by a sharp decline 1 week later. After the decline, the pond fraction gradually increased until mid-August when the ponds began to freeze. By mid-September the surface of virtually all of the ponds had frozen. The open water fraction varied between 0.02 and 0.05 from May through the end of July. In early August the open water fraction jumped to 0.20 in just a few days owing to ice divergence. Melt ponds were ubiquitous during summer, with number densities increasing from 1000 to 5000 ponds per square kilometer between June and August.

read more

Citations
More filters
Journal ArticleDOI

Crucial physical characteristics of sea ice in the Arctic section of 143°–180°W during August and early September 2008

TL;DR: In this paper, ship-based observations show that both the sea-ice thickness and concentration recorded during southward navigation from 30 August to 6 September were remarkably less than those recorded during northward navigation during 3 to 30 August, especially at low latitudes.
Journal ArticleDOI

Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket

TL;DR: In this article, the authors calculated the net radiation flux for a range of albedos under sunny and cloudy conditions and determined the break-even value for each of the conditions.
Book ChapterDOI

Topology and intelligent data analysis

TL;DR: This paper shows how topology, properly reformulated for a finite-precision world, can be useful in intelligent data analysis tasks.
Journal ArticleDOI

Comparison of radiative signals between precipitating and non-precipitating clouds in frontal and typhoon domains over East Asia

TL;DR: In this paper, a combination of precipitation radar (PR) and visible/infrared scanner (VIRS) onboard the TRMM satellite was analyzed to distinguish precipitating clouds and non-precipitating clouds (N-PCs) relying on such passive measurements.
Journal ArticleDOI

Changes in the modeled ice thickness distribution near the Surface Heat Budget of the Arctic Ocean (SHEBA) drifting ice camp

TL;DR: In this paper, the authors use camp observations and develop methods to assimilate ice thickness and open water observations into a model in order to estimate the evolution of the thickness distribution in the vicinity of the camp.
References
More filters
Journal ArticleDOI

Transient Responses of a Coupled Ocean–Atmosphere Model to Gradual Changes of Atmospheric CO2. Part I. Annual Mean Response

TL;DR: In this article, the authors investigated the response of a climate model to a gradual increase or decrease of atmospheric carbon dioxide in a general circulation model of the coupled atmosphere-ocean-land surface system with global geography and seasonal variation of insulation.
Journal ArticleDOI

The Optical Properties of Ice and Snow in the Arctic Basin

TL;DR: In this article, the authors measured light transmission and reflection on first-year sea ice near Point Barrow, Alaska, and on multi-year ice near Fletcher's Ice Island in the Beaufort Sea (lat. 84° N., long. 77°W.).
Related Papers (5)