scispace - formally typeset
Open AccessJournal ArticleDOI

All-D amino acid-containing channel-forming antibiotic peptides.

TLDR
The D enantiomers of three naturally occurring antibiotics--cecropin A, magainin 2 amide, and melittin--were synthesized and it is suggested that the mode of action of these peptides on the membranes of bacteria, erythrocytes, plasmodia, and artificial lipid bilayers may be similar and involves the formation of ion-channel pores spanning the membranes, but without specific interaction with chiral receptors or enzymes.
Abstract
The D enantiomers of three naturally occurring antibiotics--cecropin A, magainin 2 amide, and melittin--were synthesized. In addition, the D enantiomers of two synthetic chimeric cecropin-melittin hybrid peptides were prepared. Each D isomer was shown by circular dichroism to be a mirror image of the corresponding L isomer in several solvent mixtures. In 20% hexafluoro-2-propanol the peptides contained 43-75% alpha-helix. The all-D peptides were resistant to enzymatic degradation. The peptides produced single-channel conductances in planar lipid bilayers, and the D and L enantiomers caused equivalent amounts of electrical conductivity. All of the peptides were potent antibacterial agents against representative Gram-negative and Gram-positive species. The D and L enantiomers of each peptide pair were equally active, within experimental error. Sheep erythrocytes were lysed by both D- and L-melittin but not by either isomer of cecropin A, magainin 2 amide, or the hybrids cecropin A-(1-13)-melittin-(1-13)-NH2 or cecropin A-(1-8)-melittin-(1-18)-NH2. The infectivity of the bloodstream form of the malaria parasite Plasmodium falciparum was also inhibited by the D and L hybrids. It is suggested that the mode of action of these peptides on the membranes of bacteria, erythrocytes, plasmodia, and artificial lipid bilayers may be similar and involves the formation of ion-channel pores spanning the membranes, but without specific interaction with chiral receptors or enzymes.

read more

Citations
More filters
Journal ArticleDOI

Mechanisms of Antimicrobial Peptide Action and Resistance

TL;DR: The intention of this review is to illustrate the contemporary structural and functional themes among mechanisms of antimicrobial peptide action and resistance.
Journal ArticleDOI

Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides.

TL;DR: This review, which is focused on the different stages of membrane permeation induced by representatives of amphipathic alpha-helical antimicrobial and cell non-selective lytic peptides distinguishes between the 'carpet' mechanism, which holds for antimicrobial peptides versus the 'barrel-stave' mechanisms, which hold for cellnon- selective lytics peptides.
Journal ArticleDOI

Agents that increase the permeability of the outer membrane.

TL;DR: Chelators (such as EDTA, nitrilotriacetic acid, and sodium hexametaphosphate), which disintegrate the outer membrane by removing Mg2+ and Ca2+, are effective and valuable permeabilizers.
Journal ArticleDOI

Peptide antibiotics and their role in innate immunity.

TL;DR: The results obtained imply that the polypeptide-like structure dominates in the structure derived from Polypeptides with S-S Bonds while in the case of Peptides Giving Mainly or Only fJ-Sheet Structures, the polymethine-rich structure is preferred.
Journal ArticleDOI

Mode of action of membrane active antimicrobial peptides.

TL;DR: Although many studies support that bacterial membrane damage is a lethal event for bacteria, other studies point to a multihit mechanism in which the peptide binds to several targets in the cytoplasmic region of the bacteria.
Related Papers (5)