scispace - formally typeset
Journal ArticleDOI

An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates

TLDR
In this paper, an efficient and simple higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates, which accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness.
Abstract
In this paper, an efficient and simple higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton’s principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with 3-dimensional and quasi-3-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

read more

Citations
More filters
Journal ArticleDOI

A review of theories for the modeling and analysis of functionally graded plates and shells

TL;DR: A comprehensive review of various theories for the modeling and analysis of functionally graded plates and shells is presented in this paper, where a thorough review of the literature related to the development of three-dimensional elasticity solutions and a unified formulation is also presented.
Journal ArticleDOI

Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories

TL;DR: In this paper, various higher-order shear deformation plate theories for wave propagation in functionally graded plates are developed, which have fewer number of unknowns and equations of motion than the first-order deformation theory, but accounts for the transverse shear deformations without requiring shear correction factors.
Journal ArticleDOI

Stress, vibration and buckling analyses of FGM plates—A state-of-the-art review

TL;DR: In this article, a comprehensive review of the various methods employed to study the static, dynamic and stability behavior of Functionally Graded Material (FGM) plates is presented with an emphasis to present stress, vibration and buckling characteristics of FGM plates predicted using different theories.
Journal ArticleDOI

Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory

TL;DR: In this article, through-the-thickness transverse normal and shear strains and stresses in statically deformed functionally graded (FG) doubly-curved sandwich shell structures and shells of revolution using the generalized zigzag displacement field and the Carrera Unified Formulation (CUF).
Journal ArticleDOI

Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position

TL;DR: In this paper, a novel unified beam formulation and a modified couple stress theory (MCST) that considers a variable length scale parameter in conjunction with the neutral axis concept are proposed to study bending and dynamic behaviors of functionally graded (FG) micro beam.
References
More filters
Journal ArticleDOI

Average stress in matrix and average elastic energy of materials with misfitting inclusions

TL;DR: In this paper, a method of calculating the average internal stress in the matrix of a material containing inclusions with transformation strain is presented. But the authors do not consider the effects of the interaction among the inclusions and of the presence of the free boundary.
Book

Mechanics of Laminated Composite Plates and Shells : Theory and Analysis, Second Edition

TL;DR: The use of composite materials in engineering structures continues to increase dramatically, and there have been significant advances in modeling for general and composite materials and structures in particular as discussed by the authors. But the use of composites is not limited to the aerospace domain.
Journal ArticleDOI

A Simple Higher-Order Theory for Laminated Composite Plates

TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Book

Mechanics of laminated composite plates and shells : theory and analysis

J. N. Reddy
TL;DR: In this article, the authors present an analysis of the properties of composite materials using the classical and first-order theories of Laminated Composite Plates and shells, as well as a detailed analysis of their properties.
Related Papers (5)