scispace - formally typeset
Open AccessJournal ArticleDOI

Anaerobic Oxidation of Toluene, Phenol, and p-Cresol by the Dissimilatory Iron-Reducing Organism, GS-15

Reads0
Chats0
TLDR
The metabolism of toluene, phenol, and p-cresol by GS-15 provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments.
Abstract
The dissimilatory Fe(III) reducer, GS-15, is the first microorganism known to couple the oxidation of aromatic compounds to the reduction of Fe(III) and the first example of a pure culture of any kind known to anaerobically oxidize an aromatic hydrocarbon, toluene. In this study, the metabolism of toluene, phenol, and p-cresol by GS-15 was investigated in more detail. GS-15 grew in an anaerobic medium with toluene as the sole electron donor and Fe(III) oxide as the electron acceptor. Growth coincided with Fe(III) reduction. [ring-14C]toluene was oxidized to 14CO2, and the stoichiometry of 14CO2 production and Fe(III) reduction indicated that GS-15 completely oxidized toluene to carbon dioxide with Fe(III) as the electron acceptor. Magnetite was the primary iron end product during toluene oxidation. Phenol and p-cresol were also completely oxidized to carbon dioxide with Fe(III) as the sole electron acceptor, and GS-15 could obtain energy to support growth by oxidizing either of these compounds as the sole electron donor. p-Hydroxybenzoate was a transitory extracellular intermediate of phenol and p-cresol metabolism but not of toluene metabolism. GS-15 oxidized potential aromatic intermediates in the oxidation of toluene (benzylalcohol and benzaldehyde) and p-cresol (p-hydroxybenzylalcohol and p-hydroxybenzaldehyde). The metabolism described here provides a model for how aromatic hydrocarbons and phenols may be oxidized with the reduction of Fe(III) in contaminated aquifers and petroleum-containing sediments. Images

read more

Citations
More filters
Journal ArticleDOI

Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.

TL;DR: The results suggest that in anoxic soils and sediments containing amorphous and crystalline iron phases simultaneously, coupling of microbial oxidation and abiotic reduction of organic compounds may allow for concurrent natural attenuation of different contaminant classes.
Journal ArticleDOI

Phenol degradation in the strictly anaerobic iron-reducing bacterium Geobacter metallireducens GS-15.

TL;DR: Phenol degradation in the strictly anaerobic iron-reducing deltaproteobacterium Geobacter metallireducens GS-15 is investigated using metabolite, transcriptome, proteome, and enzyme analyses, which showed that the initial steps of phenol degradation are accomplished by phenylphosphate synthase and phenyl phosphate carboxylase as known from Thauera aromatica, but they also revealed some distinct differences.
Journal ArticleDOI

Three-Dimensional Model for Subsurface Transport and Biodegradation

TL;DR: This paper describes and demonstrates a numerical model for subsurface solute transport with aerobic and sequential anaerobic biodegradation, modified to include the effects of EA and nutrient availability.
Journal Article

Anaerobic Degradation of Ethylbenzene and Toluene in Denitrifying Strain EbN1 Proceeds via Independent Substrate-Induced Pathways

TL;DR: Two-dimensional gel electrophoretic analysis of extracts of cells grown on benzoate, acetophenone, ethylbenzene, or toluene showed that a number of substrate-specific proteins were induced in strain EbN1, and agrees with the finding that acetophen one is an intermediate in the degradation of ethyl Benzene.
Journal ArticleDOI

Microbial community of a gasworks aquifer and identification of nitrate-reducing Azoarcus and Georgfuchsia as key players in BTEX degradation.

TL;DR: A putative 4-methylbenzoyl-CoA reductase gene cluster was identified in the respective enrichment culture, which is possibly involved in the anaerobic degradation of p-xylene.
References
More filters
Journal ArticleDOI

Use of nuclepore filters for counting bacteria by fluorescence microscopy.

TL;DR: Polycarbonate Nuclepore filters are better than cellulose filters for the direct counting of bacteria because they have uniform pore size and a flat surface that retains all of the bacteria on top of the filter.
Journal ArticleDOI

Energy conservation in chemotrophic anaerobic bacteria.

TL;DR: This article corrects the article on p. 100 in vol.
Book ChapterDOI

The Chemistry of Submerged Soils

TL;DR: In this paper, the chemistry of submerged soils is discussed and the role of lake, estuarine, and ocean sediments as reservoirs of nutrients for aquatic plants and as sinks for terrestrial wastes.
Journal ArticleDOI

Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Journal ArticleDOI

Organic matter mineralization with reduction of ferric iron in anaerobic sediments.

TL;DR: Results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter when amorphous ferric oxyhydroxides are available in anaerobic sediments, and the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.
Related Papers (5)