scispace - formally typeset
Journal ArticleDOI

Analysis of the composite structures in diamond thin films by Raman spectroscopy.

Reads0
Chats0
TLDR
Ces films ont des structures cristallines composites de types diamant amorphe/graphite contribuent a la diffusion Raman en termes de rapport des hybridations sp 2 and sp 3.
Abstract
Diamond and diamondlike thin films produced by various chemical-vapor-deposition processes have been examined using Raman spectroscopy. These films exhibit features in the Raman spectra, suggesting that they are composites of crystalline and amorphous diamond and graphitic structures. The components of this composite structure that contribute to the Raman scattering are discussed in terms of ${\mathrm{sp}}^{2}$- and ${\mathrm{sp}}^{3}$-bonded structures. The use of Raman spectroscopy as a technique for estimating the ${\mathrm{sp}}^{2}$-to-${\mathrm{sp}}^{3}$ bonding ratio is considered. Powder composites of BN-diamond and graphite-diamond have been studied as a means of modeling the films, and a simple theoretical model of the Raman scattering from these samples is proposed. From these results it is shown that it is necessary to make assumptions about the domain size of the graphitic ${\mathrm{sp}}^{2}$ regions. It is found that the Raman scattering associated with ${\mathrm{sp}}^{2}$ bonding in the films is much stronger than that from single-crystalline or microcrystalline graphite structures. Shifts of the vibrational modes are also observed. The optical and vibrational properties of the ${\mathrm{sp}}^{2}$ component in the films implies a different atomic microstructure. A model of the ${\mathrm{sp}}^{2}$-bonding configurations in the films is proposed which may account for the observed features in the Raman spectra.

read more

Citations
More filters
Journal ArticleDOI

Diamond-like amorphous carbon

TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Journal ArticleDOI

Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond

TL;DR: It is shown how to use resonant Raman spectroscopy to determine structure and composition of carbon films with and without nitrogen, and the assignment of the peaks at 1150 and 1480 cm−1 often observed in nanodiamond.
Journal ArticleDOI

Raman spectroscopy on amorphous carbon films

TL;DR: The origin and interpretation of the Raman features of amorphous (hydrogenated) carbonfilmsdeposited at room temperature in the region of 1000-1700 cm−1 is discussed in this paper.
Journal ArticleDOI

Properties of diamond-like carbon

TL;DR: In this paper, the preparation and properties of amorphous carbon and hydrogenated amorphized carbon, often known as diamond-like carbon, have been discussed and models of the electronic structure and mechanical properties are used to relate the physical properties to the atomic structure.
Journal ArticleDOI

A Raman spectroscopic investigation of graphite oxide derived graphene

TL;DR: In this paper, it is shown that the high wavenumber "bump" can be resolved into the conventional 2D band and several defect activated peaks such as G*, D+D+D′ and 2D′.
Related Papers (5)