scispace - formally typeset
Journal ArticleDOI

Aspects of separability in the coupled cluster based direct methods for energy differences

Reads0
Chats0
TLDR
It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized, and hence the energy differences are fully extensive.
Abstract
In this paper we have discussed in detail the aspects of separability of the energy differences obtained from coupled cluster based “direct” methods such as the open-shell Coupled Cluster (CC) theory and the Coupled Cluster based Linear Response Theory (CC-LRT). It has been emphasized that, unlike the state energiesper se, the energy differences have a semi-local character in that, in the asymptotic limit of non-interacting subsystemsA, B, C, etc., they are separable as ΔE A , ΔE B , ΔE A + ΔE B , etc. depending on the subsystems excited. We classify the direct many-body methods into two categories: core-extensive and core-valence extensive. In the former, we only implicitly subtract the ground state energy computed in a size-extensive manner; the energy differences are not chosen to be valence-extensive (separable) in the semi-local sense. The core-valence extensive theories, on the other hand, are fully extensive — i.e., with respect to both core and valence interactions, and hence display the semi-local separability. Generic structures of the wave-operators for core-extensive and core-valence extensive theories are discussed. CC-LRT is shown to be core-extensive after a transcription to an equivalent wave-operator based form. The emergence of valence disconnected diagrams for two and higher valence problems are indicated. The open-shell CC theory is shown to be core-valence extensive and hence fully connected. For one valence problems, the CC theory and the CC-LRT are shown to be equivalent. The equations for the cluster amplitudes in the Bloch equation are quadratic, admitting of multiple solutions. It is shown that the cluster amplitudes for the main peaks, in principle obtainable as a series inV from the zeroth order roots of the model space, are connected, and hence the energy differences are fully extensive. It is remarkable that the satellite energies obtained from the alternative solutions of the CC equations are not valence-extensive, indicating the necessity of a formal power series structure inV of the cluster amplitudes for the valence-extensivity. The alternative solutions are not obtainable as a power series inV. The CC-LRT is shown to have an effective hamiltonian structure respecting “downward reducibility”. A unitary version of CC-LRT (UCC-LRT) is proposed, which satisfy both upward and downward reducibility. UCC-LRT is shown to lead to the recent propagator theory known as the Algebraic Diagrammatic Construction. It is shown that both the main and the satellite peaks from UCC-LRT for the one valence problems are core-valence extensive owing to the hermitized nature of the underlying operator to be diagonalized.

read more

Citations
More filters
Journal ArticleDOI

Analytic energy derivatives for ionized states described by the equation‐of‐motion coupled cluster method

TL;DR: The theory for analytic energy derivatives of excited electronic states described by the equation-of-motion coupled cluster (EOM•CC) method has been generalized to treat cases in which reference and final states differ in the number of electrons as discussed by the authors.
Journal ArticleDOI

Equation of motion coupled cluster method for electron attachment

TL;DR: The electron attachment equation of motion coupled cluster (EA•EOMCC) method is derived in this paper, which enables determination of the various bound states of an (N+1)-electron system and the corresponding energy eigenvalues relative to the energy of an N•electron CCSD reference state.
Journal ArticleDOI

Similarity transformed equation-of-motion coupled-cluster theory: Details, examples, and comparisons

TL;DR: The similarity transformed equation-of-motion coupled-cluster (STEOM-CC) method is presented in full detail in this paper, where the dependence on the choice of active space in STEOM is addressed and criteria for the selection of the active space are given.
References
More filters
Journal ArticleDOI

On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods

TL;DR: In this article, a method for the calculation of the matrix elements of the logarithm of an operator which gives the exact wavefunction when operating on the wavefunction in the one-electron approximation is proposed.
Journal ArticleDOI

Many-Body Perturbation Theory and Coupled Cluster Theory for Electron Correlation in Molecules

TL;DR: Manybody perturbation theory (MBPT) and coupled-cluster methcoder (CCM) were defined in this paper as a subset of the N-body problem.
Journal ArticleDOI

Bound states of a many-particle system

TL;DR: In this article, the bound state Schrodinger equation is constructed in terms of an arbitrary complete set of single particle wave functions, and the components of the state vector are related in a simple manner to functions represented by linked diagrams only.
Related Papers (5)