scispace - formally typeset
Open Access

Characteristics of turbulence in a boundary layer with zero pressure gradient

Reads0
Chats0
TLDR
In this article, the results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented and the importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated.
Abstract
The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Formulation of the k-w Turbulence Model Revisited

David C. Wilcox
- 01 Nov 2008 - 
TL;DR: In this article, a reformulated version of the author's k-ω model of turbulence has been presented, which has been applied to both boundary layers and free shear flows and has little sensitivity to finite freestream boundary conditions on turbulence properties.
Journal ArticleDOI

Reynolds-number scaling of the flat-plate turbulent boundary layer

TL;DR: In this article, the authors used a low-speed, high-Reynolds-number facility and a high-resolution laser-Doppler anemometer to measure Reynolds stresses for a flat-plate turbulent boundary layer from Reθ = 1430 to 31 000.
Journal ArticleDOI

Computational Aerodynamics Development and Outlook

TL;DR: The field of computational fluid dynamics during recent years has developed sufficiently to initiate some changes in traditional methods of aerodynamic design, and numerical simulations offer the potential of mending many ills of wind-tunnel and turbomachinery experiments and of providing thereby important new technical capabilities for the aerospace industry.
Journal ArticleDOI

On the universality of the Kolmogorov constant

TL;DR: For large enough microscale Reynolds numbers, the data (despite much scatter) support the notion of a "universal" constant that is independent of the flow as well as the Reynolds number, with a numerical value of about 0.5.
Journal ArticleDOI

Coherent structures near the wall in a turbulent channel flow

TL;DR: In this paper, Jeong et al. used a conditional sampling scheme to extract the entire extent of dominant vortical structures near the wall in a numerically simulated turbulent channel flow.
References
More filters
Journal Article

The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds' Numbers

TL;DR: In this article, the authors consider the problem of finding the components of the velocity at every point of a point with rectangular cartesian coordinates x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8.

The Structure of Turbulence in Fully Developed Pipe Flow

John Laufer
TL;DR: In this paper, a hot-wire anemometer was used to measure the turbulent flow in a 10-inch pipe at speeds of approximately 10 and 100 feet per second, and the results include relevant mean and statistical quantities, such as Reynolds stresses, triple correlations, turbulent dissipation, and energy spectra.
DissertationDOI

Investigation of turbulent flow in a two-dimensional channel

TL;DR: A detailed exploration of the field of mean and fluctuating quantities in a two-dimensional turbulent channel flow is presented in this article, where mean speed and axial-fluctuation measurements were made well within the laminar sublayer.

Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

TL;DR: In this article, the feasibility of artificially thickening a turbulent boundary layer on a flat plate was investigated and it was shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layers, which is free from any distortions introduced by the thickening process.