scispace - formally typeset
Open AccessJournal ArticleDOI

Clustering Algorithms: Their Application to Gene Expression Data

Reads0
Chats0
TLDR
This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.
Abstract
Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

read more

Citations
More filters
Journal ArticleDOI

Identification of transcriptional subtypes in lung adenocarcinoma and squamous cell carcinoma through integrative analysis of microarray and RNA sequencing data.

TL;DR: By integrating quantitative proteomics data, this report was able to identify tumor subtype biomarkers that effectively classify samples on the basis of both gene and protein expression, and provides the basis for further integrative data analysis across gene andprotein expression profiling platforms.
Journal ArticleDOI

Recent Advances in the Inference of Gene Flow from Population Genomic Data

TL;DR: An overview of several recent contributions to the problem of estimating gene flow is provided, which include improving upon existing test statistics to detect and measure gene flow, developing efficient frameworks for demographic model testing, and applying supervised machine learning to identify introgressed loci across genomes.
Dissertation

Multiplexed Genetic Perturbations of the Regulatory Network of E. coli.

TL;DR: The structure of the regulatory network is found to increase the dimensionality of the transcriptional response rather than reducing it, which results in significant high order epistasis beyond pair-wise interactions, which has implications for how these networks evolve.
Journal ArticleDOI

A Coherent Pattern Mining Algorithm Based on All Contiguous Column Bicluster

TL;DR: The time series similarity measure for the coherent patterns in all continuous columns, as well as the evaluation function for verifying the proposed algorithm and the corresponding biclusters, show that the algorithm is highly efficient.
References
More filters
Journal Article

Scikit-learn: Machine Learning in Python

TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.

Some methods for classification and analysis of multivariate observations

TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Proceedings Article

A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise

TL;DR: In this paper, a density-based notion of clusters is proposed to discover clusters of arbitrary shape, which can be used for class identification in large spatial databases and is shown to be more efficient than the well-known algorithm CLAR-ANS.
Related Papers (5)
Trending Questions (1)
What are applications of clustering algorithms?

Applications of clustering algorithms include revealing natural structures in gene expression data, understanding gene functions, identifying cell subtypes, mining information from noisy data, and aiding in vaccine design.