scispace - formally typeset
Open AccessJournal ArticleDOI

Clustering Algorithms: Their Application to Gene Expression Data

Reads0
Chats0
TLDR
This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.
Abstract
Gene expression data hide vital information required to understand the biological process that takes place in a particular organism in relation to its environment. Deciphering the hidden patterns in gene expression data proffers a prodigious preference to strengthen the understanding of functional genomics. The complexity of biological networks and the volume of genes present increase the challenges of comprehending and interpretation of the resulting mass of data, which consists of millions of measurements; these data also inhibit vagueness, imprecision, and noise. Therefore, the use of clustering techniques is a first step toward addressing these challenges, which is essential in the data mining process to reveal natural structures and identify interesting patterns in the underlying data. The clustering of gene expression data has been proven to be useful in making known the natural structure inherent in gene expression data, understanding gene functions, cellular processes, and subtypes of cells, mining useful information from noisy data, and understanding gene regulation. The other benefit of clustering gene expression data is the identification of homology, which is very important in vaccine design. This review examines the various clustering algorithms applicable to the gene expression data in order to discover and provide useful knowledge of the appropriate clustering technique that will guarantee stability and high degree of accuracy in its analysis procedure.

read more

Citations
More filters
Book ChapterDOI

A Short Review on Different Clustering Techniques and Their Applications

TL;DR: A concise description of the existing types of clustering approaches is given followed by a survey of the fields where clustering analytics has been effectively employed in pattern recognition and knowledge discovery.
Proceedings ArticleDOI

Data Clustering: Algorithms and Its Applications

TL;DR: Application of data clustering was systematically discussed in view of the characteristics of the different clustering techniques that make them better suited or biased when applied to several types of data, such as uncertain data, multimedia data, graph data, biological data, stream data, text data, time series data, categorical data and big data.
Journal ArticleDOI

Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures

TL;DR: The severity and endotype signatures indicate that distinct immune signatures precede the onset of severe sepsis and lethality, providing a method to triage early septic patients as mentioned in this paper .
Journal ArticleDOI

Comparative Analysis of Machine Learning Algorithms on Surface Enhanced Raman Spectra of Clinical Staphylococcus Species.

TL;DR: In this paper, the authors compared three unsupervised machine learning methods and 10 supervised machine learning algorithms, respectively, on 2,752 SERS spectra from 117 Staphylococcus strains belonging to nine clinically important Staphilicococcus species in order to test the capacity of different machine learning method for bacterial rapid differentiation and accurate prediction.
Journal ArticleDOI

Gene encoder: a feature selection technique through unsupervised deep learning-based clustering for large gene expression data

TL;DR: This work presents gene encoder, an unsupervised two-stage feature selection technique for the cancer samples’ classification, and a comparison is made with four state-of-the-art related algorithms.
References
More filters
Journal Article

Scikit-learn: Machine Learning in Python

TL;DR: Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning algorithms for medium-scale supervised and unsupervised problems, focusing on bringing machine learning to non-specialists using a general-purpose high-level language.

Some methods for classification and analysis of multivariate observations

TL;DR: The k-means algorithm as mentioned in this paper partitions an N-dimensional population into k sets on the basis of a sample, which is a generalization of the ordinary sample mean, and it is shown to give partitions which are reasonably efficient in the sense of within-class variance.
Proceedings Article

A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise

TL;DR: In this paper, a density-based notion of clusters is proposed to discover clusters of arbitrary shape, which can be used for class identification in large spatial databases and is shown to be more efficient than the well-known algorithm CLAR-ANS.
Related Papers (5)
Trending Questions (1)
What are applications of clustering algorithms?

Applications of clustering algorithms include revealing natural structures in gene expression data, understanding gene functions, identifying cell subtypes, mining information from noisy data, and aiding in vaccine design.