scispace - formally typeset
Journal ArticleDOI

Complex dewetting scenarios captured by thin-film models

Reads0
Chats0
TLDR
It is demonstrated, for the first time, that the full complex spatial and temporal evolution of the rupture of ultrathin films can be modelled in quantitative agreement with experiment and introduced a novel pattern analysis method based on Minkowski measures.
Abstract
In the course of miniaturization of electronic and microfluidic devices, reliable predictions of the stability of ultrathin films have a strategic role for design purposes. Consequently, efficient computational techniques that allow for a direct comparison with experiment become increasingly important. Here we demonstrate, for the first time, that the full complex spatial and temporal evolution of the rupture of ultrathin films can be modelled in quantitative agreement with experiment. We accomplish this by combining highly controlled experiments on different film-rupture patterns with computer simulations using novel numerical schemes for thin-film equations. For the quantitative comparison of the pattern evolution in both experiment and simulation we introduce a novel pattern analysis method based on Minkowski measures. Our results are fundamental for the development of efficient tools capable of describing essential aspects of thin-film flow in technical systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Wetting and Spreading

TL;DR: In this article, the surface forces that lead to wetting are considered, and the equilibrium surface coverage of a substrate in contact with a drop of liquid is examined, while the hydrodynamics of both wetting and dewetting is influenced by the presence of the three-phase contact line separating "wet" regions from those that are either dry or covered by a microscopic film.
Journal ArticleDOI

Dynamics and stability of thin liquid films

TL;DR: The dynamics and stability of thin liquid films have fascinated scientists over many decades: the observations of regular wave patterns in film flows along a windowpane or along guttering, the patterning of dewetting droplets, and the fingering of viscous flows down a slope are all examples that are familiar in daily life.
Journal ArticleDOI

Nanofluidics, from bulk to interfaces

TL;DR: This critical review will explore the vast manifold of length scales emerging for fluid behavior at the nanoscale, as well as the associated mechanisms and corresponding applications, and in particular explore the interplay between bulk and interface phenomena.
Journal ArticleDOI

Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

TL;DR: In this paper, a review of spatially confined, non-equilibrium physics in nanoporous media is presented. And a particular emphasis is put on texture formation upon crystallisation in nanopore-confined condensed matter, a topic both of high fundamental interest and of increasing nanotechnological importance.
Journal ArticleDOI

Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media - topical review

TL;DR: In this paper, a review of spatially confined, non-equilibrium physics in nanoporous media is presented. And a particular emphasis is put on texture formation upon crystallisation in nanopore-confined condensed matter, a topic both of high fundamental interest and of increasing nanotechnological importance.
References
More filters
Journal ArticleDOI

Long-scale evolution of thin liquid films

TL;DR: In this article, a unified mathematical theory is presented that takes advantage of the disparity of the length scales and is based on the asymptotic procedure of reduction of the full set of governing equations and boundary conditions to a simplified, highly nonlinear, evolution equation or to a set of equations.
Journal ArticleDOI

Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors

TL;DR: A thin-film field-effect transistor having an organic-inorganic hybrid material as the semiconducting channel was demonstrated and molecular engineering of the organic and inorganic components of the hybrids is expected to further improve device performance for low-cost thin- film transistors.
Book

Elementary Fluid Dynamics

David Acheson
TL;DR: The Navier-Stokes equations of very viscous flow Boundary layers Instability Appendix hints and answers for exercises Bibliography Index as mentioned in this paper and references are given in Table 1.
Journal ArticleDOI

Dewetting of thin polymer films

TL;DR: The influence of the film thickness on this process is investigated and compared to recent theoretical predictions of spinodal decomposition of partially wetting thin films.
Journal ArticleDOI

Liquid morphologies on structured surfaces: from microchannels to microchips.

TL;DR: This work has shown that the bulge state can be used to construct channel networks that could be used as fluid microchips or microreactors, and represents a bifurcation between two different morphologies of constant mean curvature.
Related Papers (5)