scispace - formally typeset
Journal ArticleDOI

Contrast in complex images.

Eli Peli
- 01 Oct 1990 - 
- Vol. 7, Iss: 10, pp 2032-2040
TLDR
A definition of local band-limited contrast in images is proposed that assigns a contrast value to every point in the image as a function of the spatial frequency band and is helpful in understanding the effects of image-processing algorithms on the perceived contrast.
Abstract
The physical contrast of simple images such as sinusoidal gratings or a single patch of light on a uniform background is well defined and agrees with the perceived contrast, but this is not so for complex images. Most definitions assign a single contrast value to the whole image, but perceived contrast may vary greatly across the image. Human contrast sensitivity is a function of spatial frequency; therefore the spatial frequency content of an image should be considered in the definition of contrast. In this paper a definition of local band-limited contrast in images is proposed that assigns a contrast value to every point in the image as a function of the spatial frequency band. For each frequency band, the contrast is defined as the ratio of the bandpass-filtered image at the frequency to the low-pass image filtered to an octave below the same frequency (local luminance mean). This definition raises important implications regarding the perception of contrast in complex images and is helpful in understanding the effects of image-processing algorithms on the perceived contrast. A pyramidal image-contrast structure based on this definition is useful in simulating nonlinear, threshold characteristics of spatial vision in both normal observers and the visually impaired.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Benchmarking of fluorescence cameras through the use of a composite phantom.

TL;DR: This work investigates the use of a composite fluorescence phantom, employed as an FMI standard, to offer a comprehensive method for validation and standardization of the performance of different imaging systems.
Patent

Method for comparing photographer aesthetic quality

TL;DR: In this article, a method for comparing a plurality of photographers by assessing the aesthetic quality of a set of digital images captured by each photographer was proposed, where a processor was used to determine an aesthetic quality parameter for each digital image in each of the sets of images.
Journal ArticleDOI

Head-to-head comparison of image quality between brain 18F-FDG images recorded with a fully digital versus a last-generation analog PET camera.

TL;DR: On normal brain 18F-FDG images and compared with a last-generation analog PET, the fully digital PET camera offers marked improvements in image noise and contrast, as well as significant potential for further enhancing spatial resolution.
Proceedings Article

Multiscale Model of Adaptation, Spatial Vision and Color Appearance.

TL;DR: A multiscale color appearance model which simulates luminance, pattern and color processing of the human visual system to accurately predict the color appearance attributes of spectral stimuli in complex surroundings under a wide range of illumination and viewing conditions is presented.
Proceedings Article

No-reference perceptual quality assessment of colour image

TL;DR: A new algorithm for quality assessment of colour reproduction based on human visual system modeling is presented and a good correlation is obtained between human evaluations and the method.
References
More filters
Journal ArticleDOI

Relations between the statistics of natural images and the response properties of cortical cells.

TL;DR: The results obtained with six natural images suggest that the orientation and the spatial-frequency tuning of mammalian simple cells are well suited for coding the information in such images if the goal of the code is to convert higher-order redundancy into first- order redundancy.
Journal ArticleDOI

Spatial frequency selectivity of cells in macaque visual cortex

TL;DR: Among other things, it is shown that many stirate cells have quite narrow spatial bandwidths and at a given retinal eccentricity, the distribution of peak frequency covers a wide range of frequencies; these findings support the basic multiple channel notion.
Journal ArticleDOI

Feature Detection in Human Vision: A Phase-Dependent Energy Model

TL;DR: A simple and biologically plausible model of how mammalian visual systems could detect and identify features in an image is presented and it is suggested that the points in a waveform that have unique perceptual significance as ‘lines’ and ‘edges’ are the points where the Fourier components of the waveform come into phase with each other.
Journal ArticleDOI

Contrast constancy: deblurring in human vision by spatial frequency channels.

TL;DR: It is argued that spatial frequency channels in the visual cortex are organized to compensate for earlier attenuation, and achieves a dramatic 'deblurring' of the image, and optimizes the clarity of vision.
Related Papers (5)