scispace - formally typeset
Journal ArticleDOI

Control of H‐ and J‐Type π Stacking by Peripheral Alkyl Chains and Self‐Sorting Phenomena in Perylene Bisimide Homo‐ and Heteroaggregates

Reads0
Chats0
TLDR
The synthesis, self-assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported, which points to a self-sorting process.
Abstract
The synthesis, self-assembly, and gelation ability of a series of organogelators based on perylene bisimide (PBI) dyes containing amide groups at imide positions are reported. The synergetic effect of intermolecular hydrogen bonding among the amide functionalities and pi-pi stacking between the PBI units directs the formation of the self-assembled structure in solution, which beyond a certain concentration results in gelation. Effects of different peripheral alkyl substituents on the self-assembly were studied by solvent- and temperature-dependent UV-visible and circular dichroism (CD) spectroscopy. PBI derivatives containing linear alkyl side chains in the periphery formed H-type pi stacks and red gels, whereas by introducing branched alkyl chains the formation of J-type pi stacks and green gels could be achieved. Sterically demanding substituents, in particular, the 2-ethylhexyl group completely suppressed the pi stacking. Coaggregation studies with H- and J-aggregating chromophores revealed the formation of solely H-type pi stacks containing both precursor molecules at a lower mole fraction of J-aggregating chromophore. Beyond a critical composition of the two chromophores, mixed H-aggregate and J-aggregate were formed simultaneously, which points to a self-sorting process. The versatility of the gelators is strongly dependent on the length and nature of the peripheral alkyl substituents. CD spectroscopic studies revealed a preferential helicity of the aggregates of PBI building blocks bearing chiral side chains. Even for achiral PBI derivatives, the utilization of chiral solvents such as (R)- or (S)-limonene was effective in preferential population of one-handed helical fibers. AFM studies revealed the formation of helical fibers from all the present PBI gelators, irrespective of the presence of chiral or achiral side chains. Furthermore, vortex flow was found to be effective in macroscopic orientation of the aggregates as evidenced from the origin of CD signals from aggregates of achiral PBI molecules.

read more

Citations
More filters

Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Journal ArticleDOI

J-aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials.

TL;DR: This Review provides an overview on the J-aggregates of a broad variety of dyes created by using supramolecular construction principles, and discusses their optical and photophysical properties as well as their potential applications.
Journal ArticleDOI

Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions

TL;DR: The recent advances in supramolecular helical assemblies formed from chiral and achiral small molecules, oligomers (foldamers), and helical and nonhelical polymers from the viewpoints of their formations with unique chiral phenomena, such as amplification of chirality during the dynamic helically assembled processes, properties, and specific functionalities.
References
More filters
MonographDOI

Supramolecular Chemistry: Concepts and Perspectives

TL;DR: From molecular to supramolescular chemistry: concepts and language of supramolecular chemistry, molecular recognition, information, complementarity molecular receptors - design principles and more.
Journal ArticleDOI

Self-assembly at all scales.

TL;DR: Self-assembling processes are common throughout nature and technology and involve components from the molecular to the planetary scale and many different kinds of interactions.
Journal ArticleDOI

Organic Thin Film Transistors for Large Area Electronics

TL;DR: In this article, the authors present new insight into conduction mechanisms and performance characteristics, as well as opportunities for modeling properties of organic thin-film transistors (OTFTs) and discuss progress in the growing field of n-type OTFTs.
Journal ArticleDOI

Two‐layer organic photovoltaic cell

TL;DR: In this paper, a two-layer organic photovoltaic cell was fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative, achieving a power conversion efficiency of about 1% under simulated AM2 illumination.
Journal ArticleDOI

Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.

TL;DR: The ability to prepare structures in the upper part of this range of sizes would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.
Related Papers (5)