scispace - formally typeset
Journal ArticleDOI

Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides

Reads0
Chats0
TLDR
In this article, a novel class of homogeneous nickel(II) catalysts, denoted as Ni(NCN)Br, is reported to mediate in the presence of activated alkyl halides, e.g., CCl4 or α-halocarbonyl compounds, and remarkably enough, poly(methyl methacrylate) (PMMA) with molecular weight up to at least 105 g/mol was synthesized in a controlled fashion.
Abstract
A novel class of homogeneous nickel(II) catalysts, i.e [Ni{o,o‘(CH2NMe2)2C6H3}Br], denoted as Ni(NCN‘)Br, is reported to mediate in the presence of activated alkyl halides, e.g., CCl4 or α-halocarbonyl compounds, a well-controlled radical polymerization of methacrylic monomers [methyl and n-butyl methacrylate), (MMA, n-BuMA)] at rather low temperatures (<100 °C). The number-average molecular weight of the polymer gradually increased with the monomer conversion and was inversely proportional to the initiator concentration of alkyl halides. The molecular weight distribution (MWD) remained very narrow during the whole course of the polymerization (MWD < 1.3). All the experimental data including a successful block copolymerization (n-BuMA-b-MMA) experiment were in agreement with a living polymerization process, and remarkably enough, poly(methyl methacrylate) (PMMA) with molecular weight up to at least 105 g/mol was synthesized in a controlled fashion. Increased thermal stability of the PMMA is a further indi...

read more

Citations
More filters
Journal ArticleDOI

Iron-Mediated ICAR ATRP of Methyl Methacrylate

TL;DR: In this paper, an iron(III) (FeCl3·6H2O) catalyst was found to be an active catalyst for initiators for continuous activator regeneration atom transfer radical polymerization (ICAR ATRP) of methyl methacrylate (MMA), using triphenylphosphine (PPh3) as ligand and azobis(isobutyronitrile) (AIBN) as thermal radical initiator, and 1,4-(2-bromo-2-methylpropionato)benzene (B
Journal ArticleDOI

Controlled Radical Polymerization in the Presence of Oxygen

TL;DR: In this article, it was shown that a controlled radical polymerization with polymers having low polydispersities (Mw/Mn < 1.2) can be prepared without any removal of oxygen or inhibitor and does not require purging with inert gas, if a sufficient amount of zerovalent metal is present.
Journal ArticleDOI

50th Anniversary Perspective: Metal-Catalyzed Living Radical Polymerization: Discovery and Perspective

TL;DR: In this paper, the historical aspects as well as the prospects as a new polymerization tool are described toward advanced structural control or technological materials innovation in various fields, and metal-catalyzed living radical polymerization is used for precise construction of tailor-made polymeric architectures.
Journal ArticleDOI

Observation and analysis of a slow termination process in the atom transfer radical polymerization of styrene

TL;DR: In this paper, the authors observed the slow elimination of HBr from the polymer endgroups in the ATRP of styrene and showed that this process is likely due to the solvent effect on the stability of 1-PEBr at 110 °C.
Journal ArticleDOI

Manganese-Based Controlled/Living Radical Polymerization of Vinyl Acetate, Methyl Acrylate, and Styrene: Highly Active, Versatile, and Photoresponsive Systems

TL;DR: In this paper, the photoresponsive controlled/living radical polymerization was developed using Mn2(CO)10 coupled with an alkyl iodide initiator (R−I) under weak visible light.
References
More filters
Journal ArticleDOI

Narrow molecular weight resins by a free-radical polymerization process

TL;DR: In this paper, free radical polymerization was used to obtain polystyrene and poly(styrene-co-butadiene) with narrow polydispersity (1.19-1.36) in the presence of 2,2,6, 6,6-tetramethyl-1-piperidinyloxy using benzoyl peroxide as initiator
Journal ArticleDOI

Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process

TL;DR: An extension of ATRA to atom transfer radical addition, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization as mentioned in this paper, using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x, e.g., CuX/2,2'-bipyridine, as a catalyst.
Journal ArticleDOI

|[lsquo]|Living|[rsquo]| Polymers

M. Szwarc
- 24 Nov 1956 - 
Related Papers (5)