scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization

01 Sep 1995-Macromolecules (American Chemical Society)-Vol. 28, Iss: 5, pp 1721-1723
About: This article is published in Macromolecules.The article was published on 1995-09-01. It has received 2779 citations till now. The article focuses on the topics: Dichlorotris(triphenylphosphine)ruthenium(II) & Living free-radical polymerization.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of recent mechanistic developments in the field of controlled/living radical polymerization (CRP) is presented, with particular emphasis on structure-reactivity correlations and "rules" for catalyst selection in ATRP, for chain transfer agent selection in reversible addition-fragmentation chain transfer (RAFT) polymerization, and for the selection of an appropriate mediating agent in stable free radical polymerisation (SFRP), including organic and transition metal persistent radicals.

2,869 citations


Additional excerpts

  • ...ATRP has been successfully mediated by a variety of metals, including those from Groups 4 (Ti [112]), 6 (Mo [77,113,114]), 7 (Re [115]), 8 (Fe, [116–119] Ru, [120,121] Os [78]), 9 (Rh, [122] Co [123]), 10 (Ni, [124,125] Pd [126]), and 11 (Cu [89,127])....

    [...]

Journal ArticleDOI
TL;DR: The current status and future perspectives in atom transfer radical polymerization (ATRP) are presented in this paper, with a special emphasis on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP.
Abstract: Current status and future perspectives in atom transfer radical polymerization (ATRP) are presented. Special emphasis is placed on mechanistic understanding of ATRP, recent synthetic and process development, and new controlled polymer architectures enabled by ATRP. New hybrid materials based on organic/inorganic systems and natural/synthetic polymers are presented. Some current and forthcoming applications are described.

2,188 citations

Journal ArticleDOI
TL;DR: This work proposes to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs.
Abstract: Molecular imprinting technology (MIT), often described as a method of making a molecular lock to match a molecular key, is a technique for the creation of molecularly imprinted polymers (MIPs) with tailor-made binding sites complementary to the template molecules in shape, size and functional groups. Owing to their unique features of structure predictability, recognition specificity and application universality, MIPs have found a wide range of applications in various fields. Herein, we propose to comprehensively review the recent advances in molecular imprinting including versatile perspectives and applications, concerning novel preparation technologies and strategies of MIT, and highlight the applications of MIPs. The fundamentals of MIPs involving essential elements, preparation procedures and characterization methods are briefly outlined. Smart MIT for MIPs is especially highlighted including ingenious MIT (surface imprinting, nanoimprinting, etc.), special strategies of MIT (dummy imprinting, segment imprinting, etc.) and stimuli-responsive MIT (single/dual/multi-responsive technology). By virtue of smart MIT, new formatted MIPs gain popularity for versatile applications, including sample pretreatment/chromatographic separation (solid phase extraction, monolithic column chromatography, etc.) and chemical/biological sensing (electrochemical sensing, fluorescence sensing, etc.). Finally, we propose the remaining challenges and future perspectives to accelerate the development of MIT, and to utilize it for further developing versatile MIPs with a wide range of applications (650 references).

1,647 citations