scispace - formally typeset
Journal ArticleDOI

Controlled Radical Polymerization of Methacrylic Monomers in the Presence of a Bis(ortho-chelated) Arylnickel(II) Complex and Different Activated Alkyl Halides

Reads0
Chats0
TLDR
In this article, a novel class of homogeneous nickel(II) catalysts, denoted as Ni(NCN)Br, is reported to mediate in the presence of activated alkyl halides, e.g., CCl4 or α-halocarbonyl compounds, and remarkably enough, poly(methyl methacrylate) (PMMA) with molecular weight up to at least 105 g/mol was synthesized in a controlled fashion.
Abstract
A novel class of homogeneous nickel(II) catalysts, i.e [Ni{o,o‘(CH2NMe2)2C6H3}Br], denoted as Ni(NCN‘)Br, is reported to mediate in the presence of activated alkyl halides, e.g., CCl4 or α-halocarbonyl compounds, a well-controlled radical polymerization of methacrylic monomers [methyl and n-butyl methacrylate), (MMA, n-BuMA)] at rather low temperatures (<100 °C). The number-average molecular weight of the polymer gradually increased with the monomer conversion and was inversely proportional to the initiator concentration of alkyl halides. The molecular weight distribution (MWD) remained very narrow during the whole course of the polymerization (MWD < 1.3). All the experimental data including a successful block copolymerization (n-BuMA-b-MMA) experiment were in agreement with a living polymerization process, and remarkably enough, poly(methyl methacrylate) (PMMA) with molecular weight up to at least 105 g/mol was synthesized in a controlled fashion. Increased thermal stability of the PMMA is a further indi...

read more

Citations
More filters
Journal ArticleDOI

Iron(II) Chloride Complex for Living Radical Polymerization of Methyl Methacrylate1

TL;DR: In this article, it was shown that the Fe(II) complex is effective in the homolytic and reversible cleavage of the carbon−halogen terminal originating from the halide initiators into a transient radical growing species to induce living MMA polymerization.
Patent

Improved processes based on atom (or group) transfer radical polymerization and novel (co)polymers having useful structures and properties

TL;DR: Improved processes for atom (or group) transfer radical polymerization (ATRP) and novel polymers have been developed and described in this paper, where novel copolymers comprising a least one polymeric branch or polymeric block with a predominantly alternating monomer sequence are described.
Journal ArticleDOI

Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes1

TL;DR: In this paper, the atom transfer radical polymerization (ATRP) catalyzed by iron halide complexes under both homogeneous and homogeneous conditions was used for the controlled/living polymerization of styrene and methyl methacrylate.
Journal ArticleDOI

Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide†

TL;DR: In this article, the kinetics of free radical polymerization of styrene and n-butyl acrylate carried out in the presence of N-tertbutyl-N-[1-diethylphosphono-(2,2-dimethylpropyl)] nitroxide (DEPN) was investigated.
References
More filters
Journal ArticleDOI

Narrow molecular weight resins by a free-radical polymerization process

TL;DR: In this paper, free radical polymerization was used to obtain polystyrene and poly(styrene-co-butadiene) with narrow polydispersity (1.19-1.36) in the presence of 2,2,6, 6,6-tetramethyl-1-piperidinyloxy using benzoyl peroxide as initiator
Journal ArticleDOI

Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process

TL;DR: An extension of ATRA to atom transfer radical addition, ATRP, provided a new and efficient way to conduct controlled/living radical polymerization as mentioned in this paper, using a simple alkyl halide, R-X (X = Cl and Br), as an initiator and a transition metal species complexed by suitable ligand(s), M t n /L x, e.g., CuX/2,2'-bipyridine, as a catalyst.
Journal ArticleDOI

|[lsquo]|Living|[rsquo]| Polymers

M. Szwarc
- 24 Nov 1956 - 
Related Papers (5)