scispace - formally typeset
Journal ArticleDOI

Convex Approximations of Chance Constrained Programs

TLDR
A large deviation-type approximation, referred to as “Bernstein approximation,” of the chance constrained problem is built that is convex and efficiently solvable and extended to the case of ambiguous chance constrained problems, where the random perturbations are independent with the collection of distributions known to belong to a given convex compact set.
Abstract
We consider a chance constrained problem, where one seeks to minimize a convex objective over solutions satisfying, with a given close to one probability, a system of randomly perturbed convex constraints. This problem may happen to be computationally intractable; our goal is to build its computationally tractable approximation, i.e., an efficiently solvable deterministic optimization program with the feasible set contained in the chance constrained problem. We construct a general class of such convex conservative approximations of the corresponding chance constrained problem. Moreover, under the assumptions that the constraints are affine in the perturbations and the entries in the perturbation vector are independent-of-each-other random variables, we build a large deviation-type approximation, referred to as “Bernstein approximation,” of the chance constrained problem. This approximation is convex and efficiently solvable. We propose a simulation-based scheme for bounding the optimal value in the chance constrained problem and report numerical experiments aimed at comparing the Bernstein and well-known scenario approximation approaches. Finally, we extend our construction to the case of ambiguous chance constrained problems, where the random perturbations are independent with the collection of distributions known to belong to a given convex compact set rather than to be known exactly, while the chance constraint should be satisfied for every distribution given by this set.

read more

Citations
More filters
Book

Lectures on Stochastic Programming: Modeling and Theory

TL;DR: The authors dedicate this book to Julia, Benjamin, Daniel, Natan and Yael; to Tsonka, Konstatin and Marek; and to the Memory of Feliks, Maria, and Dentcho.
Journal ArticleDOI

Theory and Applications of Robust Optimization

TL;DR: This paper surveys the primary research, both theoretical and applied, in the area of robust optimization (RO), focusing on the computational attractiveness of RO approaches, as well as the modeling power and broad applicability of the methodology.
Journal Article

Theory and Applications of Robust Optimization

TL;DR: In this article, the authors survey the primary research, both theoretical and applied, in the area of robust optimization and highlight applications of RO across a wide spectrum of domains, including finance, statistics, learning, and various areas of engineering.
Journal ArticleDOI

Stochastic Model Predictive Control: An Overview and Perspectives for Future Research

TL;DR: In this article, a model predictive control (MPC) approach is proposed to solve an open-loop constrained optimal control problem (OCP) repeatedly in a receding-horizon manner, where the OCP is solved over a finite sequence of control actions at every sampling time instant that the current state of the system is measured.
Journal ArticleDOI

A Sample Approximation Approach for Optimization with Probabilistic Constraints

TL;DR: This work studies approximations of optimization problems with probabilistic constraints in which the original distribution of the underlying random vector is replaced with an empirical distribution obtained from a random sample to obtain a lower bound to the true optimal value.
References
More filters
Journal ArticleDOI

Coherent Measures of Risk

TL;DR: In this paper, the authors present and justify a set of four desirable properties for measures of risk, and call the measures satisfying these properties "coherent", and demonstrate the universality of scenario-based methods for providing coherent measures.
Journal ArticleDOI

Optimization of conditional value-at-risk

R. T. Rockafellar, +1 more
- 01 Jan 2000 - 
TL;DR: In this paper, a new approach to optimize or hedging a portfolio of financial instruments to reduce risk is presented and tested on applications, which focuses on minimizing Conditional Value-at-Risk (CVaR) rather than minimizing Value at Risk (VaR), but portfolios with low CVaR necessarily have low VaR as well.
Book

Large Deviations Techniques and Applications

Amir Dembo, +1 more
TL;DR: The LDP for Abstract Empirical Measures and applications-The Finite Dimensional Case and Applications of Empirically Measures LDP are presented.
Journal ArticleDOI

The Price of Robustness

TL;DR: In this paper, the authors propose an approach that attempts to make this trade-off more attractive by flexibly adjusting the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations.

The price of the robustness

D Bertsimas, +1 more
TL;DR: An approach is proposed that flexibly adjust the level of conservatism of the robust solutions in terms of probabilistic bounds of constraint violations, and an attractive aspect of this method is that the new robust formulation is also a linear optimization problem, so it naturally extend to discrete optimization problems in a tractable way.