scispace - formally typeset
Open AccessPosted Content

Convolutional Two-Stream Network Fusion for Video Action Recognition

TLDR
In this paper, a spatial and temporal network can be fused at the last convolution layer without loss of performance, but with a substantial saving in parameters, and furthermore, pooling of abstract convolutional features over spatiotemporal neighbourhoods further boosts performance.
Abstract
Recent applications of Convolutional Neural Networks (ConvNets) for human action recognition in videos have proposed different solutions for incorporating the appearance and motion information. We study a number of ways of fusing ConvNet towers both spatially and temporally in order to best take advantage of this spatio-temporal information. We make the following findings: (i) that rather than fusing at the softmax layer, a spatial and temporal network can be fused at a convolution layer without loss of performance, but with a substantial saving in parameters; (ii) that it is better to fuse such networks spatially at the last convolutional layer than earlier, and that additionally fusing at the class prediction layer can boost accuracy; finally (iii) that pooling of abstract convolutional features over spatiotemporal neighbourhoods further boosts performance. Based on these studies we propose a new ConvNet architecture for spatiotemporal fusion of video snippets, and evaluate its performance on standard benchmarks where this architecture achieves state-of-the-art results.

read more

Citations
More filters
Proceedings ArticleDOI

A Revisit of Sparse Coding Based Anomaly Detection in Stacked RNN Framework

TL;DR: A Temporally-coherent Sparse Coding which can be mapped to a sRNN which facilitates the parameter optimization and accelerates the anomaly prediction and builds a very large dataset which is even larger than the summation of all existing dataset for anomaly detection in terms of both the volume of data and the diversity of scenes.
Proceedings ArticleDOI

A Low Power, Fully Event-Based Gesture Recognition System

TL;DR: This work presents the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS).
Proceedings ArticleDOI

Video Classification With Channel-Separated Convolutional Networks

TL;DR: It is empirically demonstrated that the amount of channel interactions plays an important role in the accuracy of 3D group convolutional networks, and this leads to an architecture -- Channel-Separated Convolutional Network (CSN) -- which is simple, efficient, yet accurate.
Posted Content

Spatiotemporal Residual Networks for Video Action Recognition

TL;DR: In this article, the authors proposed spatiotemporal residual networks (ResNets) for action recognition in videos, which is a combination of two-stream convolutional networks and residual connections between appearance and motion pathways.
Journal ArticleDOI

Deep Audio-visual Speech Recognition

TL;DR: This work compares two models for lip reading, one using a CTC loss, and the other using a sequence-to-sequence loss, built on top of the transformer self-attention architecture.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Related Papers (5)