scispace - formally typeset
Open accessPosted Content

Deep Graph Structure Learning for Robust Representations: A Survey

04 Mar 2021-arXiv: Learning-
Abstract: Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

... read more

Citations
  More

12 results found


Open accessPosted Content
09 Feb 2021-arXiv: Learning
Abstract: Graph neural networks (GNNs) work well when the graph structure is provided. However, this structure may not always be available in real-world applications. One solution to this problem is to infer a task-specific latent structure and then apply a GNN to the inferred graph. Unfortunately, the space of possible graph structures grows super-exponentially with the number of nodes and so the task-specific supervision may be insufficient for learning both the structure and the GNN parameters. In this work, we propose the Simultaneous Learning of Adjacency and GNN Parameters with Self-supervision, or SLAPS, a method that provides more supervision for inferring a graph structure through self-supervision. A comprehensive experimental study demonstrates that SLAPS scales to large graphs with hundreds of thousands of nodes and outperforms several models that have been proposed to learn a task-specific graph structure on established benchmarks.

... read more

Topics: Adjacency list (62%)

5 Citations


Open accessProceedings ArticleDOI: 10.1145/3404835.3462968
Jianxin Chang1, Chen Gao1, Yu Zheng1, Yiqun Hui  +4 moreInstitutions (1)
11 Jul 2021-
Abstract: Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short forSeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

... read more

Topics: Core (graph theory) (59%)

2 Citations


Open accessPosted Content
Yanqiao Zhu1, Yichen Xu2, Qiang Liu1, Shu Wu1Institutions (2)
02 Sep 2021-arXiv: Learning
Abstract: Graph Contrastive Learning (GCL) establishes a new paradigm for learning graph representations without human annotations. Although remarkable progress has been witnessed recently, the success behind GCL is still left somewhat mysterious. In this work, we first identify several critical design considerations within a general GCL paradigm, including augmentation functions, contrasting modes, contrastive objectives, and negative mining techniques. Then, to understand the interplay of different GCL components, we conduct extensive, controlled experiments over a set of benchmark tasks on datasets across various domains. Our empirical studies suggest a set of general receipts for effective GCL, e.g., simple topology augmentations that produce sparse graph views bring promising performance improvements; contrasting modes should be aligned with the granularities of end tasks. In addition, to foster future research and ease the implementation of GCL algorithms, we develop an easy-to-use library PyGCL, featuring modularized CL components, standardized evaluation, and experiment management. We envision this work to provide useful empirical evidence of effective GCL algorithms and offer several insights for future research.

... read more

2 Citations


Open accessProceedings ArticleDOI: 10.1145/3459637.3482129
Liping Wang1, Fenyu Hu1, Shu Wu1, Liang Wang1Institutions (1)
26 Oct 2021-
Abstract: Graph Neural Networks (GNNs) have achieved great success among various domains. Nevertheless, most GNN methods are sensitive to the quality of graph structures. To tackle this problem, some studies exploit different graph structure learning strategies to refine the original graph structure. However, these methods only consider feature information while ignoring available label information. In this paper, we propose a novel label-informed graph structure learning framework which incorporates label information explicitly through a class transition matrix. We conduct extensive experiments on seven node classification benchmark datasets and the results show that our method outperforms or matches the state-of-the-art baselines.

... read more


Open accessPosted Content
23 Jun 2021-arXiv: Learning
Abstract: Graph neural networks (GNNs) have achieved great success on various tasks and fields that require relational modeling. GNNs aggregate node features using the graph structure as inductive biases resulting in flexible and powerful models. However, GNNs remain hard to interpret as the interplay between node features and graph structure is only implicitly learned. In this paper, we propose a novel method called Kedge for explicitly sparsifying the underlying graph by removing unnecessary neighbors. Our key idea is based on a tractable method for sparsification using the Hard Kumaraswamy distribution that can be used in conjugation with any GNN model. Kedge learns edge masks in a modular fashion trained with any GNN allowing for gradient based optimization in an end-to-end fashion. We demonstrate through extensive experiments that our model Kedge can prune a large proportion of the edges with only a minor effect on the test accuracy. Specifically, in the PubMed dataset, Kedge learns to drop more than 80% of the edges with an accuracy drop of merely 2% showing that graph structure has only a small contribution in comparison to node features. Finally, we also show that Kedge effectively counters the over-smoothing phenomena in deep GNNs by maintaining good task performance with increasing GNN layers.

... read more


References
  More

60 results found


Open accessProceedings Article
Diederik P. Kingma1, Max Welling1Institutions (1)
01 Jan 2014-
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

... read more

Topics: Approximate inference (67%), Inference (55%), Estimator (53%) ... read more

14,546 Citations


Open accessProceedings Article
Christian Szegedy1, Wojciech Zaremba2, Ilya Sutskever1, Joan Bruna2  +4 moreInstitutions (4)
01 Jan 2014-
Abstract: Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition tasks. While their expressiveness is the reason they succeed, it also causes them to learn uninterpretable solutions that could have counter-intuitive properties. In this paper we report two such properties. First, we find that there is no distinction between individual high level units and random linear combinations of high level units, according to various methods of unit analysis. It suggests that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks. Second, we find that deep neural networks learn input-output mappings that are fairly discontinuous to a significant extend. We can cause the network to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error. In addition, the specific nature of these perturbations is not a random artifact of learning: the same perturbation can cause a different network, that was trained on a different subset of the dataset, to misclassify the same input.

... read more

6,703 Citations


Open accessProceedings ArticleDOI: 10.17863/CAM.48429
15 Feb 2018-
Abstract: We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-the-art results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a protein-protein interaction dataset (wherein test graphs remain unseen during training).

... read more

3,491 Citations


Open accessJournal ArticleDOI: 10.1080/01621459.2017.1285773
Abstract: One of the core problems of modern statistics is to approximate difficult-to-compute probability densities. This problem is especially important in Bayesian statistics, which frames all inference about unknown quantities as a calculation involving the posterior density. In this article, we review variational inference (VI), a method from machine learning that approximates probability densities through optimization. VI has been used in many applications and tends to be faster than classical methods, such as Markov chain Monte Carlo sampling. The idea behind VI is to first posit a family of densities and then to find a member of that family which is close to the target density. Closeness is measured by Kullback–Leibler divergence. We review the ideas behind mean-field variational inference, discuss the special case of VI applied to exponential family models, present a full example with a Bayesian mixture of Gaussians, and derive a variant that uses stochastic optimization to scale up to massive data...

... read more

Topics: Frequentist inference (63%), Fiducial inference (62%), Bayesian inference (62%) ... read more

2,449 Citations


Open accessProceedings Article
Eric Jang1, Shixiang Gu2, Ben Poole3Institutions (3)
03 Nov 2016-
Abstract: Categorical variables are a natural choice for representing discrete structure in the world. However, stochastic neural networks rarely use categorical latent variables due to the inability to backpropagate through samples. In this work, we present an efficient gradient estimator that replaces the non-differentiable sample from a categorical distribution with a differentiable sample from a novel Gumbel-Softmax distribution. This distribution has the essential property that it can be smoothly annealed into a categorical distribution. We show that our Gumbel-Softmax estimator outperforms state-of-the-art gradient estimators on structured output prediction and unsupervised generative modeling tasks with categorical latent variables, and enables large speedups on semi-supervised classification.

... read more

Topics: Categorical variable (70%), Categorical distribution (66%), Dirichlet distribution (62%) ... read more

2,200 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
202112
Network Information
Related Papers (5)
Graph Attention Networks15 Feb 2018

Petar Veličković, Guillem Cucurull +4 more