scispace - formally typeset
Journal ArticleDOI

Deep Learning Hierarchical Representations for Image Steganalysis

Jian Ye, +2 more
- 01 Jun 2017 - 
- Vol. 12, Iss: 11, pp 2545-2557
TLDR
This paper presents an alternative approach to steganalysis of digital images based on convolutional neural network (CNN), which is shown to be able to well replicate and optimize these key steps in a unified framework and learn hierarchical representations directly from raw images.
Abstract
Nowadays, the prevailing detectors of steganographic communication in digital images mainly consist of three steps, ie, residual computation, feature extraction, and binary classification In this paper, we present an alternative approach to steganalysis of digital images based on convolutional neural network (CNN), which is shown to be able to well replicate and optimize these key steps in a unified framework and learn hierarchical representations directly from raw images The proposed CNN has a quite different structure from the ones used in conventional computer vision tasks Rather than a random strategy, the weights in the first layer of the proposed CNN are initialized with the basic high-pass filter set used in the calculation of residual maps in a spatial rich model (SRM), which acts as a regularizer to suppress the image content effectively To better capture the structure of embedding signals, which usually have extremely low SNR (stego signal to image content), a new activation function called a truncated linear unit is adopted in our CNN model Finally, we further boost the performance of the proposed CNN-based steganalyzer by incorporating the knowledge of selection channel Three state-of-the-art steganographic algorithms in spatial domain, eg, WOW, S-UNIWARD, and HILL, are used to evaluate the effectiveness of our model Compared to SRM and its selection-channel-aware variant maxSRMd2, our model achieves superior performance across all tested algorithms for a wide variety of payloads

read more

Citations
More filters
Journal ArticleDOI

Deep Residual Network for Steganalysis of Digital Images

TL;DR: A deep residual architecture designed to minimize the use of heuristics and externally enforced elements that is universal in the sense that it provides state-of-the-art detection accuracy for both spatial-domain and JPEG steganography.
Journal ArticleDOI

A Novel Image Steganography Method via Deep Convolutional Generative Adversarial Networks

TL;DR: A novel image SWE method based on deep convolutional generative adversarial networks that has the advantages of highly accurate information extraction and a strong ability to resist detection by state-of-the-art image steganalysis algorithms.
Journal ArticleDOI

Depth-Wise Separable Convolutions and Multi-Level Pooling for an Efficient Spatial CNN-Based Steganalysis

TL;DR: The experimental results show that the proposed CNN structure is significantly better than other five methods when it is used to detect three spatial algorithms such as WOW, S-UNIWARD and HILL with a wide variety of datasets and payloads.
Journal ArticleDOI

A fusion steganographic algorithm based on Faster R-CNN

TL;DR: Experimental results show that this approach enhances the security and provides robust embedding of secret data in image, video, voice or text media.
Journal ArticleDOI

An Embedding Cost Learning Framework Using GAN

TL;DR: A distortion function generating a framework for steganography that outperforms the current state-of-the-art steganographic schemes and the adversarial training time is reduced dramatically compared with the GAN-based automatic Steganographic distortion learning framework (ASDL-GAN).
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Proceedings Article

Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

TL;DR: Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin.
Posted Content

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe as discussed by the authors is a BSD-licensed C++ library with Python and MATLAB bindings for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Posted Content

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

TL;DR: This work proposes a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified unit and derives a robust initialization method that particularly considers the rectifier nonlinearities.
Related Papers (5)