scispace - formally typeset
Open AccessProceedings Article

Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction

Reads0
Chats0
TLDR
A Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations is proposed, which demonstrates effectiveness of the approach over state-of-the-art methods.
Abstract
Taxi demand prediction is an important building block to enabling intelligent transportation systems in a smart city. An accurate prediction model can help the city pre-allocate resources to meet travel demand and to reduce empty taxis on streets which waste energy and worsen the traffic congestion. With the increasing popularity of taxi requesting services such as Uber and Didi Chuxing (in China), we are able to collect large-scale taxi demand data continuously. How to utilize such big data to improve the demand prediction is an interesting and critical real-world problem. Traditional demand prediction methods mostly rely on time series forecasting techniques, which fail to model the complex non-linear spatial and temporal relations. Recent advances in deep learning have shown superior performance on traditionally challenging tasks such as image classification by learning the complex features and correlations from large-scale data. This breakthrough has inspired researchers to explore deep learning techniques on traffic prediction problems. However, existing methods on traffic prediction have only considered spatial relation (e.g., using CNN) or temporal relation (e.g., using LSTM) independently. We propose a Deep Multi-View Spatial-Temporal Network (DMVST-Net) framework to model both spatial and temporal relations. Specifically, our proposed model consists of three views: temporal view (modeling correlations between future demand values with near time points via LSTM), spatial view (modeling local spatial correlation via local CNN), and semantic view (modeling correlations among regions sharing similar temporal patterns). Experiments on large-scale real taxi demand data demonstrate effectiveness of our approach over state-of-the-art methods.

read more

Citations
More filters
Journal ArticleDOI

A Comprehensive Survey on Graph Neural Networks

TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Journal ArticleDOI

Spatiotemporal Multi-Graph Convolution Network for Ride-Hailing Demand Forecasting

TL;DR: The spatiotemporal multi-graph convolution network (ST-MGCN), a novel deep learning model for ride-hailing demand forecasting, is proposed which first encode the non-Euclidean pair-wise correlations among regions into multiple graphs and then explicitly model these correlations using multi- graph convolution.
Posted Content

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

TL;DR: Wang et al. as discussed by the authors proposed a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling, which can precisely capture the hidden spatial dependency in the data.
Posted Content

GMAN: A Graph Multi-Attention Network for Traffic Prediction

TL;DR: Experimental results on two real-world traffic prediction tasks demonstrate the superiority of GMAN, and in the 1 hour ahead prediction, GMAN outperforms state-of-the-art methods by up to 4% improvement in MAE measure.
Posted Content

Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting

TL;DR: It is argued that learning node-specific patterns is essential for traffic forecasting while the pre-defined graph is avoidable, and two adaptive modules for enhancing Graph Convolutional Network (GCN) with new capabilities are proposed.
Related Papers (5)