scispace - formally typeset
Open AccessJournal ArticleDOI

Detecting Adversarial Examples in Deep Networks with Adaptive Noise Reduction.

Reads0
Chats0
TLDR
Zhang et al. as mentioned in this paper proposed a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models.
Abstract
Recently, many studies have demonstrated deep neural network (DNN) classifiers can be fooled by the adversarial example, which is crafted via introducing some perturbations into an original sample. Accordingly, some powerful defense techniques were proposed. However, existing defense techniques often require modifying the target model or depend on the prior knowledge of attacks. In this paper, we propose a straightforward method for detecting adversarial image examples, which can be directly deployed into unmodified off-the-shelf DNN models. We consider the perturbation to images as a kind of noise and introduce two classic image processing techniques, scalar quantization and smoothing spatial filter, to reduce its effect. The image entropy is employed as a metric to implement an adaptive noise reduction for different kinds of images. Consequently, the adversarial example can be effectively detected by comparing the classification results of a given sample and its denoised version, without referring to any prior knowledge of attacks. More than 20,000 adversarial examples against some state-of-the-art DNN models are used to evaluate the proposed method, which are crafted with different attack techniques. The experiments show that our detection method can achieve a high overall F1 score of 96.39% and certainly raises the bar for defense-aware attacks.

read more

Citations
More filters
Journal ArticleDOI

One Pixel Attack for Fooling Deep Neural Networks

TL;DR: This paper proposes a novel method for generating one-pixel adversarial perturbations based on differential evolution (DE), which requires less adversarial information (a black-box attack) and can fool more types of networks due to the inherent features of DE.
Journal ArticleDOI

Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey

TL;DR: A comprehensive survey on adversarial attacks on deep learning in computer vision can be found in this paper, where the authors review the works that design adversarial attack, analyze the existence of such attacks and propose defenses against them.
Journal ArticleDOI

One pixel attack for fooling deep neural networks

TL;DR: In this paper, a method for generating one-pixel adversarial perturbations based on differential evolution (DE) is proposed, which requires less adversarial information (a black-box attack) and can fool more types of networks due to the inherent features of DE.
Posted Content

Motivating the Rules of the Game for Adversarial Example Research

TL;DR: It is argued that adversarial example defense papers have, to date, mostly considered abstract, toy games that do not relate to any specific security concern, and a taxonomy of motivations, constraints, and abilities for more plausible adversaries is established.
Proceedings ArticleDOI

Deep Text Classification Can be Fooled

TL;DR: An effective method to craft text adversarial samples that can successfully fool both state-of-the-art character-level and word-level DNN-based text classifiers and is difficult to be perceived.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Proceedings ArticleDOI

Caffe: Convolutional Architecture for Fast Feature Embedding

TL;DR: Caffe provides multimedia scientists and practitioners with a clean and modifiable framework for state-of-the-art deep learning algorithms and a collection of reference models for training and deploying general-purpose convolutional neural networks and other deep models efficiently on commodity architectures.
Journal ArticleDOI

Backpropagation applied to handwritten zip code recognition

TL;DR: This paper demonstrates how constraints from the task domain can be integrated into a backpropagation network through the architecture of the network, successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service.
Related Papers (5)