scispace - formally typeset
Open AccessJournal ArticleDOI

Di(isothiocyanato)bis(4-methyl-4’-vinyl-2,2’-bipyridine) Ruthenium(II) Films Deposited on Titanium Oxide-Coated, Fluorine-Doped Tin Oxide for an Efficient Solar Cell

Reads0
Chats0
TLDR
In this article, a dye-sensitized titanium oxide electrodes were prepared by immobilizing a novel ruthenium complex, di(isothiocy- anato)bis(4-methyl-4'-vinyl-2,2'-bipyridine)rUThenium(II) [(NCS)2(mvbpy)2Ru(II)] or the ruthensium complex/sodium 4vinylbenzenesulfonate composite film deposited on the surface of a TiO2/FTO electrode through
Abstract
Dye-sensitized titanium oxide electrodes were prepared by immobilizing a novel ruthenium complex, di(isothiocy- anato)bis(4-methyl-4’-vinyl-2,2’-bipyridine)ruthenium(II) [(NCS)2(mvbpy)2Ru(II)] or the ruthenium complex/sodium 4-vinylbenzenesulfonate onto the surface of a titanium oxide-coated, fluorine-doped tin oxide (TiO2/FTO) electrode through a new electrochemically initiated film formation method, in which the electrolysis step and the film deposition step were individually performed. The incident photon-to-current conversion efficiency (IPCE) of the Ru complex film on a TiO2/FTO electrode was disappointedly insufficient (1.2% at 440 nm). In sharp contrast, the Ru(II) complex/so- dium 4-vinylbenzenesulfonate composite film deposited on the surface of a TiO2/FTO electrode showed maximum IPCE of 31.7% at 438 nm.

read more

Content maybe subject to copyright    Report

Citations
More filters

DERIVATIZATION OF DIIMINE TRICARBONYL Re(I) COMPLEXES FOR COOPERATIVE CATALYSIS AND SURFACE IMMOBILIZATION

TL;DR: In this paper, the effects of forcing proximity of catalytic sites on surfaces by physically adsorbing both tricarbonyl Re(I) compounds in mesoporous silica were investigated.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal ArticleDOI

Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes

TL;DR: Cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes were prepared and characterized with respct to their absorption, luminescence, and redox behavior.
Journal ArticleDOI

Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency

TL;DR: In this article, a Co(II/III)tris(bipyridyl)-based redox electrolyte was used in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer (designated YD2-o-C8).
Journal Article

Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency (vol 334, pg 629, 2011)

TL;DR: Mesoscopic solar cells that incorporate a Co(II/III)tris(bipyridyl)–based redox electrolyte in conjunction with a custom synthesized donor-π-bridge-acceptor zinc porphyrin dye as sensitizer are reported, enabling attainment of strikingly high photovoltages approaching 1 volt.
Book

Dye-sensitized Solar Cells

TL;DR: The dye-sensitized solar cells (DSC) as discussed by the authors provides a technically and economically credible alternative concept to present day p-n junction photovoltaic devices, where light is absorbed by a sensitizer, which is anchored to the surface of a wide band semiconductor.
Related Papers (5)