scispace - formally typeset
Open AccessBook

Dye-sensitized Solar Cells

TLDR
The dye-sensitized solar cells (DSC) as discussed by the authors provides a technically and economically credible alternative concept to present day p-n junction photovoltaic devices, where light is absorbed by a sensitizer, which is anchored to the surface of a wide band semiconductor.
Abstract
The dye-sensitized solar cells (DSC) provides a technically and economically credible alternative concept to present day p–n junction photovoltaic devices. In contrast to the conventional systems where the semiconductor assume both the task of light absorption and charge carrier transport the two functions are separated here. Light is absorbed by a sensitizer, which is anchored to the surface of a wide band semiconductor. Charge separation takes place at the interface via photo-induced electron injection from the dye into the conduction band of the solid. Carriers are transported in the conduction band of the semiconductor to the charge collector. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrstalline morphology permits to harvest a large fraction of sunlight. Nearly quantitative conversion of incident photon into electric current is achieved over a large spectral range extending from the UV to the near IR region. Overall solar (standard AM 1.5) to current conversion efficiencies (IPCE) over 10% have been reached. There are good prospects to produce these cells at lower cost than conventional devices. Here we present the current state of the field, discuss new concepts of the dye-sensitized nanocrystalline solar cell (DSC) including heterojunction variants and analyze the perspectives for the future development of the technology.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Applications of ionic liquids in the chemical industry

TL;DR: There have been parallel and collaborative exchanges between academic research and industrial developments since the materials were first reported in 1914, it is demonstrated.
Journal ArticleDOI

Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers

TL;DR: A molecularly engineered porphyrin dye is reported, coded SM315, which features the prototypical structure of a donor-π-bridge-acceptor and both maximizes electrolyte compatibility and improves light-harvesting properties.
Journal ArticleDOI

TiO2 nanotubes: synthesis and applications.

TL;DR: This review attempts to cover all aspects, including underlying principles and key functional features of TiO(2), in a comprehensive way and also indicates potential future directions of the field.
Journal ArticleDOI

Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules

TL;DR: Recent advances in molecular design and technological aspects of metal-free organic dyes for applications in dye-sensitized solar cells are focused on.
Journal ArticleDOI

Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells

TL;DR: The EIS measurements show that DSC performance variations under prolonged thermal aging result mainly from the decrease in the lifetime of the conduction band electron in the TiO2 film.
References
More filters
Journal ArticleDOI

A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films

TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Journal Article

Photoelectrochemical cells : Materials for clean energy

Michael Grätzel
- 01 Jan 2001 - 
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Journal ArticleDOI

Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes

TL;DR: Cis-X 2 Bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) complexes were prepared and characterized with respct to their absorption, luminescence, and redox behavior.
Journal ArticleDOI

Hybrid Nanorod-Polymer Solar Cells

TL;DR: It is demonstrated that semiconductor nanorods can be used to fabricate readily processed and efficient hybrid solar cells together with polymers and Tuning the band gap by altering the nanorod radius enabled us to optimize the overlap between the absorption spectrum of the cell and the solar emission spectrum.
Journal ArticleDOI

Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells

TL;DR: The black dye, when anchored to nanocrystalline TiO(2) films achieves very efficient sensitization over the whole visible range extending into the near-IR region up to 920 nm, yielding over 80% incident photon-to-current efficiencies (IPCE).
Related Papers (5)