scispace - formally typeset
Journal ArticleDOI

Dynamic wall modeling for large-eddy simulation of complex turbulent flows

Meng Wang, +1 more
- 17 May 2002 - 
- Vol. 14, Iss: 7, pp 2043-2051
TLDR
In this paper, the efficacy of large-eddy simulation (LES) with wall modeling for complex turbulent flows is assessed by considering turbulent boundary-layer flows past an asymmetric trailing edge.
Abstract
The efficacy of large-eddy simulation (LES) with wall modeling for complex turbulent flows is assessed by considering turbulent boundary-layer flows past an asymmetric trailing-edge. Wall models based on turbulent boundary-layer equations and their simpler variants are employed to compute the instantaneous wall shear stress, which is used as approximate boundary conditions for the LES. It is demonstrated that, as first noted by Cabot and Moin [Flow Turb. Combust. 63, 269 (2000)], when a Reynolds-averaged Navier–Stokes type eddy viscosity is used in the wall-layer equations with nonlinear convective terms, its value must be reduced to account for only the unresolved part of the Reynolds stress. A dynamically adjusted mixing-length eddy viscosity is used in the turbulent boundary-layer equation model, which is shown to be considerably more accurate than the simpler wall models based on the instantaneous log law. This method predicts low-order velocity statistics in good agreement with those from the full LES with resolved wall-layers, at a small fraction of the original computational cost. In particular, the unsteady separation near the trailing-edge is captured correctly, and the prediction of surface pressure fluctuations also shows promise.

read more

Citations
More filters
Journal ArticleDOI

A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities

TL;DR: In this article, a CFD strategy is proposed that combines delayed detached-eddy simulation (DDES) with an improved RANS-LES hybrid model aimed at wall modelling in LES (WMLES).
Journal ArticleDOI

Wall-layer models for large-eddy simulations

TL;DR: In this article, the authors present three broad classes of approaches: bypassing this region altogether using wall functions, solving a separate set of equations in the nearwall region, weakly coupled to the outer flow, or simulating the near-wall region in a global, Reynolds-averaged, sense.
Journal ArticleDOI

Hybrid LES/RANS methods for the simulation of turbulent flows

TL;DR: A coherent review of the various approaches proposed in the recent literature on hybrid LES/RANS approaches is presented to provide information on how to distinguish different methods and their ingredients and to further the understanding of inherent limitations and difficulties.
Journal ArticleDOI

Computational aeroacoustics: progress on nonlinear problems of sound generation

TL;DR: A hierarchy of computational approaches that range from semi-empirical schemes that estimate the noise sources using mean-flow and turbulence statistics, to high-fidelity unsteady flow simulations that resolve the sound generation process by direct application of the fundamental conservation principles is discussed in this paper.
Journal ArticleDOI

Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model

TL;DR: In this paper, the authors proposed modifications of two recently developed hybrid CFD strategies, Delayed Detached Eddy Simulation (DDES) and DDES with Improved wall-modeling capability (IDDES), aimed at fine-tuning of these approaches to the k-ω SST background RANS model.
References
More filters
Journal ArticleDOI

A dynamic subgrid‐scale eddy viscosity model

TL;DR: In this article, a new eddy viscosity model is presented which alleviates many of the drawbacks of the existing subgrid-scale stress models, such as the inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes.
Journal ArticleDOI

A proposed modification of the Germano subgrid‐scale closure method

D. K. Lilly
- 01 Mar 1992 - 
TL;DR: In this paper, the subgrid-scale closure method developed by Germano et al. is modified by use of a least squares technique to minimize the difference between the closure assumption and the resolved stresses.
Journal ArticleDOI

Subgrid Scale Model for Finite Difference Simulations of Turbulent Flows in Plane Channels and Annuli

TL;DR: In this paper, the finite difference procedure and the subgrid scale (SGS) motion model are used to simulate high Reynolds number turbulent flows of incompressible fluids in plane channels and annuli, and the boundary conditions are formulated in a manner consistent with the SGS theory.
Journal ArticleDOI

Computational Aerodynamics Development and Outlook

TL;DR: The field of computational fluid dynamics during recent years has developed sufficiently to initiate some changes in traditional methods of aerodynamic design, and numerical simulations offer the potential of mending many ills of wind-tunnel and turbomachinery experiments and of providing thereby important new technical capabilities for the aerospace industry.
Journal ArticleDOI

Approximate Wall Boundary Conditions in the Large-Eddy Simulation of High Reynolds Number Flow

TL;DR: In this article, the authors examine results from simulations of both attached and separated flows on coarse grids in which the near-wall regions are not resolved and are instead represented by approximate wall boundary conditions.
Related Papers (5)