scispace - formally typeset
Journal ArticleDOI

Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys.

Stephen M. Foiles, +2 more
- 15 Jun 1986 - 
- Vol. 33, Iss: 12, pp 7983-7991
Reads0
Chats0
TLDR
A consistent set of embedding functions and pair interactions for use with the embedded-atom method was determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys as discussed by the authors.
Abstract
A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

read more

Citations
More filters
Journal ArticleDOI

Ordered surface phases of Au on Cu

TL;DR: In this paper, the authors used the embedded atom method to calculate the ordered surface layers on the low index faces of Cu which exist in equilibrium with a bulk containing dilute amounts of Au.
Journal ArticleDOI

Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations

TL;DR: In this paper, a conceptual framework is proposed to characterize fracture through continuum interface separation constitutive laws that are motivated by molecular dynamics simulations using embedded-atom method potentials, which are distinguished from previous continuum models in that discrete atomistics are used to determine a set of nanoscale effects, accounting for the influence of atomic structure and imperfections on interface separation or fracture.
Journal ArticleDOI

Atomic-scale study of dislocation–stacking fault tetrahedron interactions. Part I: mechanisms

TL;DR: In this article, the authors describe the interaction between a moving dislocation and an individual stacking fault tetrahedra (SFT), which is distinguished by a small physical size of the order of ∼1-10nm.
Journal ArticleDOI

A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

TL;DR: New emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment are highlighted.
Journal ArticleDOI

Computer simulation of liquid metals

TL;DR: In this article, the results of computer simulation of liquid metals are reviewed. But the authors focus on the simulated results obtained using the embedded atom model (EAM) and do not consider the simulation of supercooled metals.
References
More filters
Journal ArticleDOI

Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals

TL;DR: In this paper, the authors derived an expression for the total energy of a metal using the embedding energy from which they obtained several ground-state properties, such as the lattice constant, elastic constants, sublimation energy, and vacancy-formation energy.
Journal ArticleDOI

Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals

TL;DR: In this article, a semi-empirical model of metals and impurities (embedded atom method) was proposed to make possible a static treatment of the brittle fracture of a transition metal in the presence of hydrogen.
Journal ArticleDOI

Surface free energies of solid metals: Estimation from liquid surface tension measurements

TL;DR: In this paper, a semi-theoretical approach was proposed to estimate the surface energy of solids in the absence of direct experimental measurement. But this method was not suitable for the case of high-index surfaces.
Journal ArticleDOI

Universal features of the equation of state of metals

TL;DR: The zero-temperature equation of state of metals, in the absence of phase transitions, was shown to be accurately predicted from zero-pressure data in this article, and a simple universal relation was found.
Journal ArticleDOI

Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method

TL;DR: The surface composition of Ni-Cu alloys has been calculated as a function of atomic layer, crystal face, and bulk composition at a temperature of 800 K and the results show that the composition varies nonmonotonically near the surface with the surface layer strongly enriched in Cu while the near-surface layers are enriched in Ni.
Related Papers (5)