scispace - formally typeset
Open AccessJournal ArticleDOI

Exact Matrix Completion via Convex Optimization

TLDR
It is proved that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries, and that objects other than signals and images can be perfectly reconstructed from very limited information.
Abstract
We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys $$m\ge C\,n^{1.2}r\log n$$ for some positive numerical constant C, then with very high probability, most n×n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Robust principal component analysis

TL;DR: In this paper, the authors prove that under some suitable assumptions, it is possible to recover both the low-rank and the sparse components exactly by solving a very convenient convex program called Principal Component Pursuit; among all feasible decompositions, simply minimize a weighted combination of the nuclear norm and of the e1 norm.
Journal ArticleDOI

Robust Recovery of Subspace Structures by Low-Rank Representation

TL;DR: It is shown that the convex program associated with LRR solves the subspace clustering problem in the following sense: When the data is clean, LRR exactly recovers the true subspace structures; when the data are contaminated by outliers, it is proved that under certain conditions LRR can exactly recover the row space of the original data.
Journal ArticleDOI

Geometric Deep Learning: Going beyond Euclidean data

TL;DR: In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions) and are natural targets for machine-learning techniques as mentioned in this paper.
Journal ArticleDOI

A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography

TL;DR: The genetic identity of each virus particle present in the mixture can be assigned based solely on the structural information derived from single envelope glycoproteins displayed on the virus surface by the nuclear norm-based, collaborative alignment method presented here.
Posted Content

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

TL;DR: In this article, a modular framework for constructing randomized algorithms that compute partial matrix decompositions is presented, which uses random sampling to identify a subspace that captures most of the action of a matrix and then the input matrix is compressed to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization.
References
More filters
Book

Compressed sensing

TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Journal ArticleDOI

Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information

TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Book

Random Graphs

Book

Topics in Matrix Analysis

TL;DR: The field of values as discussed by the authors is a generalization of the field of value of matrices and functions, and it includes singular value inequalities, matrix equations and Kronecker products, and Hadamard products.
Journal ArticleDOI

Decoding by linear programming

TL;DR: F can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program) and numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted.
Related Papers (5)
Trending Questions (1)
How can we use the information in the data matrix to produce the complete image of the original object?

The paper proposes a convex optimization program that finds the matrix with minimum nuclear norm to complete the data matrix and recover the missing entries.