scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Few-cycle pulse generation using low confinement loss solid-core photonic quasi-crystal fiber

01 Nov 2015-pp 1-4
TL;DR: In this paper, a solid core photonic quasi-crystal fiber (SC-PQF) was designed for a wide range of operating wavelengths from 0.3 to 5 μm.
Abstract: We design a solid-core photonic quasi-crystal fiber (SC-PQF) of 6-fold for a wide range of operating wavelengths from 0.3 to 5 μm. Further, we explore the various optical properties, namely, birefringence, group velocity dispersion, confinement loss and nonlinearity for the proposed SC-PQF. We achieve a low dispersion of −13 ps2/km and a high nonlinearity of 480 W−1km−1 for 0.3 μm wavelength. By exploiting these optical properties, we numerically demonstrate the generation of few-cycle optical pulses of pulse width 4.7 fs from 30 fs input pulse using the higher order soliton pulse compression technique.
References
More filters
Book
Govind P. Agrawal1
01 Jan 1989
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers. Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2]. Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4]. By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5]. This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics.

15,770 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discuss the impact of these pulses on high-field physics.
Abstract: The rise time of intense radiation determines the maximum field strength atoms can be exposed to before their polarizability dramatically drops due to the detachment of an outer electron. Recent progress in ultrafast optics has allowed the generation of ultraintense light pulses comprising merely a few field oscillation cycles. The arising intensity gradient allows electrons to survive in their bound atomic state up to external field strengths many times higher than the binding Coulomb field and gives rise to ionization rates comparable to the light frequency, resulting in a significant extension of the frontiers of nonlinear optics and (nonrelativistic) high-field physics. Implications include the generation of coherent harmonic radiation up to kiloelectronvolt photon energies and control of the atomic dipole moment on a subfemtosecond $(1{\mathrm{f}\mathrm{s}=10}^{\mathrm{\ensuremath{-}}15}\mathrm{}\mathrm{s})$ time scale. This review presents the landmarks of the 30-odd-year evolution of ultrashort-pulse laser physics and technology culminating in the generation of intense few-cycle light pulses and discusses the impact of these pulses on high-field physics. Particular emphasis is placed on high-order harmonic emission and single subfemtosecond extreme ultraviolet/x-ray pulse generation. These as well as other strong-field processes are governed directly by the electric-field evolution, and hence their full control requires access to the (absolute) phase of the light carrier. We shall discuss routes to its determination and control, which will, for the first time, allow access to the electromagnetic fields in light waves and control of high-field interactions with never-before-achieved precision.

2,547 citations

Govind P. Agrawal1
01 Jan 2006
TL;DR: The field of nonlinear fiber optics has advanced enough that a whole book was devoted to it as discussed by the authors, which has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field.
Abstract: Nonlinear fiber optics concerns with the nonlinear optical phenomena occurring inside optical fibers Although the field ofnonlinear optics traces its beginning to 1961, when a ruby laser was first used to generate the second-harmonic radiation inside a crystal [1], the use ofoptical fibers as a nonlinear medium became feasible only after 1970 when fiber losses were reduced to below 20 dB/km [2] Stimulated Raman and Brillouin scatterings in single-mode fibers were studied as early as 1972 [3] and were soon followed by the study of other nonlinear effects such as self- and crossphase modulation and four-wave mixing [4] By 1989, the field ofnonlinear fiber optics has advanced enough that a whole book was devoted to it [5] This book or its second edition has been translated into Chinese, Japanese, and Russian languages, attesting to the worldwide activity in the field of nonlinear fiber optics

1,515 citations

Proceedings ArticleDOI
17 Nov 2003
TL;DR: In this paper, a review of the different types and applications of photonic crystal fibers with particular emphasis on recent advances in the field is presented, with a focus on the photonic bandgap effect.
Abstract: Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications of photonic crystal fibers with particular emphasis on recent advances in the field.

403 citations

Journal ArticleDOI
TL;DR: The generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length is described, and the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series.
Abstract: We make use of coherent control of four-wave mixing to the ultraviolet as a diagnostic and describe the generation of a periodic optical waveform where the spectrum is sufficiently broad that the envelope is approximately a single-cycle in length, and where the temporal shape of this envelope may be synthesized by varying the coefficients of a Fourier series. Specifically, using seven sidebands, we report the generation of a train of single-cycle optical pulses with a pulse width of 1.6 fs, a pulse separation of 11 fs, and a peak power of 1 MW.

186 citations


"Few-cycle pulse generation using lo..." refers background in this paper

  • ...In the fiber based lasers, mainly, there are two important pulse compression processes, namely, adiabatic pulse compression and soliton effect pulse compression [3]....

    [...]