Book•
Foundations of Statistical Natural Language Processing
28 May 1999-
TL;DR: This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear and provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations.
Abstract: Statistical approaches to processing natural language text have become dominant in recent years This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear The book contains all the theory and algorithms needed for building NLP tools It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications
Content maybe subject to copyright Report
Citations
More filters
Proceedings Article•
[...]
TL;DR: This work presents iterative parameter estimation algorithms for conditional random fields and compares the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.
Abstract: We present conditional random fields , a framework for building probabilistic models to segment and label sequence data. Conditional random fields offer several advantages over hidden Markov models and stochastic grammars for such tasks, including the ability to relax strong independence assumptions made in those models. Conditional random fields also avoid a fundamental limitation of maximum entropy Markov models (MEMMs) and other discriminative Markov models based on directed graphical models, which can be biased towards states with few successor states. We present iterative parameter estimation algorithms for conditional random fields and compare the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.
12,343 citations
Cites background or methods from "Foundations of Statistical Natural ..."
[...]
[...]
[...]
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.
10,141 citations
[...]
TL;DR: This survey discusses the main approaches to text categorization that fall within the machine learning paradigm and discusses in detail issues pertaining to three different problems, namely, document representation, classifier construction, and classifier evaluation.
Abstract: The automated categorization (or classification) of texts into predefined categories has witnessed a booming interest in the last 10 years, due to the increased availability of documents in digital form and the ensuing need to organize them. In the research community the dominant approach to this problem is based on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of preclassified documents, the characteristics of the categories. The advantages of this approach over the knowledge engineering approach (consisting in the manual definition of a classifier by domain experts) are a very good effectiveness, considerable savings in terms of expert labor power, and straightforward portability to different domains. This survey discusses the main approaches to text categorization that fall within the machine learning paradigm. We will discuss in detail issues pertaining to three different problems, namely, document representation, classifier construction, and classifier evaluation.
7,232 citations
Cites background from "Foundations of Statistical Natural ..."
[...]
[...]
[...]
TL;DR: This research aims to mine and to summarize all the customer reviews of a product, and proposes several novel techniques to perform these tasks.
Abstract: Merchants selling products on the Web often ask their customers to review the products that they have purchased and the associated services. As e-commerce is becoming more and more popular, the number of customer reviews that a product receives grows rapidly. For a popular product, the number of reviews can be in hundreds or even thousands. This makes it difficult for a potential customer to read them to make an informed decision on whether to purchase the product. It also makes it difficult for the manufacturer of the product to keep track and to manage customer opinions. For the manufacturer, there are additional difficulties because many merchant sites may sell the same product and the manufacturer normally produces many kinds of products. In this research, we aim to mine and to summarize all the customer reviews of a product. This summarization task is different from traditional text summarization because we only mine the features of the product on which the customers have expressed their opinions and whether the opinions are positive or negative. We do not summarize the reviews by selecting a subset or rewrite some of the original sentences from the reviews to capture the main points as in the classic text summarization. Our task is performed in three steps: (1) mining product features that have been commented on by customers; (2) identifying opinion sentences in each review and deciding whether each opinion sentence is positive or negative; (3) summarizing the results. This paper proposes several novel techniques to perform these tasks. Our experimental results using reviews of a number of products sold online demonstrate the effectiveness of the techniques.
6,565 citations
Cites background from "Foundations of Statistical Natural ..."
[...]
References
More filters
Book•
[...]
TL;DR: A complete guide to the C4.5 system as implemented in C for the UNIX environment, which starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting.
Abstract: From the Publisher:
Classifier systems play a major role in machine learning and knowledge-based systems, and Ross Quinlan's work on ID3 and C4.5 is widely acknowledged to have made some of the most significant contributions to their development. This book is a complete guide to the C4.5 system as implemented in C for the UNIX environment. It contains a comprehensive guide to the system's use , the source code (about 8,800 lines), and implementation notes. The source code and sample datasets are also available on a 3.5-inch floppy diskette for a Sun workstation.
C4.5 starts with large sets of cases belonging to known classes. The cases, described by any mixture of nominal and numeric properties, are scrutinized for patterns that allow the classes to be reliably discriminated. These patterns are then expressed as models, in the form of decision trees or sets of if-then rules, that can be used to classify new cases, with emphasis on making the models understandable as well as accurate. The system has been applied successfully to tasks involving tens of thousands of cases described by hundreds of properties. The book starts from simple core learning methods and shows how they can be elaborated and extended to deal with typical problems such as missing data and over hitting. Advantages and disadvantages of the C4.5 approach are discussed and illustrated with several case studies.
This book and software should be of interest to developers of classification-based intelligent systems and to students in machine learning and expert systems courses.
21,396 citations
[...]
01 Jan 1994
TL;DR: The Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08.
Abstract: Note: Includes bibliographical references, 3 appendixes and 2 indexes.- Diskette v 2.06, 3.5''[1.44M] for IBM PC, PS/2 and compatibles [DOS] Reference Record created on 2004-09-07, modified on 2016-08-08
19,744 citations
"Foundations of Statistical Natural ..." refers methods in this paper
[...]
[...]
[...]
TL;DR: In this paper, an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail, is described, and a reported shortcoming of the basic algorithm is discussed.
Abstract: The technology for building knowledge-based systems by inductive inference from examples has been demonstrated successfully in several practical applications. This paper summarizes an approach to synthesizing decision trees that has been used in a variety of systems, and it describes one such system, ID3, in detail. Results from recent studies show ways in which the methodology can be modified to deal with information that is noisy and/or incomplete. A reported shortcoming of the basic algorithm is discussed and two means of overcoming it are compared. The paper concludes with illustrations of current research directions.
16,062 citations
Book•
[...]
01 Jan 1983
TL;DR: Reading is a need and a hobby at once and this condition is the on that will make you feel that you must read.
Abstract: Some people may be laughing when looking at you reading in your spare time. Some may be admired of you. And some may want be like you who have reading hobby. What about your own feel? Have you felt right? Reading is a need and a hobby at once. This condition is the on that will make you feel that you must read. If you know are looking for the book enPDFd introduction to modern information retrieval as the choice of reading, you can find here.
11,859 citations
[...]
TL;DR: As a result of this grant, the researchers have now published on CDROM a corpus of over 4 million words of running text annotated with part-of- speech (POS) tags, which includes a fully hand-parsed version of the classic Brown corpus.
Abstract: : As a result of this grant, the researchers have now published oil CDROM a corpus of over 4 million words of running text annotated with part-of- speech (POS) tags, with over 3 million words of that material assigned skeletal grammatical structure This material now includes a fully hand-parsed version of the classic Brown corpus About one half of the papers at the ACL Workshop on Using Large Text Corpora this past summer were based on the materials generated by this grant
7,927 citations
Related Papers (5)
[...]
[...]