scispace - formally typeset
Proceedings ArticleDOI

From Oil-Prone Source Rock to Gas-Producing Shale Reservoir - Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs

TLDR
In this paper, total organic carbon (TOC), maturity level (vitrinite reflectance), mineralogy, thickness, and organic matter type are used to classify organic matter that ranges from oil-prone algal and herbaceous to gas-prone woody/coaly material.
Abstract
Many currently producing shale-gas reservoirs are overmature oil-prone source rocks. Through burial and heating these reservoirs evolve from organic-matter-rich mud deposited in marine, lacustrine, or swamp environments. Key characterization parameters are: total organic carbon (TOC), maturity level (vitrinite reflectance), mineralogy, thickness, and organic matter type. Hydrogento-carbon (HI) and oxygen-to-carbon (OI) ratios are used to classify organic matter that ranges from oil-prone algal and herbaceous to gas-prone woody/coaly material. Although organic-matter-rich intervals can be hundreds of meters thick, vertical variability in TOC is high ( 50% of the total porosity, and these pores may be hydrocarbon wet, at least during most of the thermal maturation process. A full understanding of the relation of porosity and gas content will result in development of optimized processes for hydrocarbon recovery in shale-gas reservoirs.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores

TL;DR: In this paper, a pore classification consisting of three major matrix-related pore types is presented that can be used to quantify matrix related pore and relate them to pore networks.
Journal ArticleDOI

Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania

TL;DR: In this article, the pore volume detected by field-emission scanning electron microscopy (FE-SEM) is associated with organic matter (OM) instead of mineral matrix.
Journal ArticleDOI

Development of organic porosity in the Woodford Shale with increasing thermal maturity

TL;DR: In this paper, a combination of focused ion beam milling and scanning electron microscopy was used to describe the evolution of secondary organic porosity in eight Woodford Shale (Late Devonian-Early Mississippian) samples with mean random vitrinite reflectance values ranging from 0.51% Ro to 6.36% Ro.
Journal ArticleDOI

Characterization and Analysis of Porosity and Pore Structures

TL;DR: There are a large number of methods for quantifying porosity, and an increasingly complex idea of what it means to do so as discussed by the authors, which is why it is important to quantify the relationships between porosity and storage, transport and rock properties, however, the pore structure must be measured and quantitatively described.
Journal ArticleDOI

Natural fractures in shale: A review and new observations

TL;DR: In this article, the authors present new core and outcrop data from 18 shale plays that reveal common types of shale fractures and their mineralization, orientation, and size patterns, and identify a need for further work in this field and on the role of natural fractures generally.
References
More filters
Journal ArticleDOI

The electrical resistivity log as an aid in determining some reservoir characteristics

TL;DR: The usefulness of the electrical resistivity log in determining reservoir characteristics is governed largely by: (1) the accuracy with which the true resistivity of the formation can be determined; (2) the scope of detailed data concerning the relation of resistivity measurements to formation characteristics; (3) the available information concerning the conductivity of connate or formation waters; and (4) the extent of geologic knowledge regarding probable changes in facies within given horizons, both vertically and laterally, particularly in relation to the resultant effect on the electrical properties of the reservoir as mentioned in this paper.
Book

Petroleum Formation and Occurrence

TL;DR: The early transformation of organic matter from organisms to geochemical fossils and Kerogen has been studied in the literature as mentioned in this paper, with a focus on the migration and accumulation of oil and gas.
Journal ArticleDOI

Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment

TL;DR: In this article, the authors estimate that the Barnett Shale has a total generation potential of about 609 bbl of oil equivalent/ac-ft or the equivalent of 3657 mcf/acft (84.0 m 3 /m 3 ).
Journal ArticleDOI

Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale

TL;DR: In this article, the authors used scanning electron microscopy to characterize the pore system in the Barnett Shale of the Fort Worth Basin, Texas, showing that the pores in these rocks are dominantly nanometer in scale (nanopores).
Journal ArticleDOI

Sediment Transport, Part II: Suspended Load Transport

TL;DR: In this article, a method is presented which enables the computation of the suspended load as the depth-integration of the product of the local concentration and flow velocity, based on the calculation of the reference concentration from the bed-load transport.
Related Papers (5)