scispace - formally typeset
Open AccessJournal ArticleDOI

Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection

W. van Saarloos
- 01 Jan 1988 - 
- Vol. 37, Iss: 1, pp 211-229
Reads0
Chats0
TLDR
In this paper, it was shown that for sufficiently localized initial conditions the velocity of a front can reach the velocity corresponding to the marginal stability point, the point at which the stability of the front profile moving with a constant speed changes.
Abstract
In this paper the propagation of fronts into an unstable state are studied. Such fronts can occur e.g., in the form of domain walls in liquid crystals, or when the dynamics of a system which is suddenly quenched into an unstable state is dominated by domain walls moving in from the boundary. It was emphasized recently by Dee et al. that for sufficiently localized initial conditions the velocity of such fronts often approaches the velocity corresponding to the marginal stability point, the point at which the stability of a front profile moving with a constant speed changes. I show here when and why this happens, and advocate the marginal stability approach as a simple way to calculate the front velocity explicitly in the relevant cases. I sketch the physics underlying this dynamical mechanism with analogies and, building on recent work by Shraiman and Bensimon, show how an equation for the local ``wave number'' that may be viewed as a generalization of the Burgers equation, drives the front velocity to the marginal stability value. This happens provided the steady-state solutions lose stability because the group velocity for perturbations becomes larger than the envelope velocity of the front.For a given equation, our approach allows one to check explicitly that the marginal stability fixed point is attractive, and this is done for the amplitude equation and the Swift-Hohenberg equation. I also analyze an extension of the Fisher-Kolmogorov equation, obtained by adding a stabilizing fourth-order derivative -\ensuremath{\gamma} ${\ensuremath{\partial}}^{4}$\ensuremath{\varphi}/\ensuremath{\partial}${x}^{4}$ to it. I predict that for \ensuremath{\gamma}(1/12 the fronts in this equation are of the same type as those occurring in the Fisher-Kolmogorov equation, i.e., localized initial conditions develop into a uniformly translating front solution of the form \ensuremath{\varphi}(x-vt) that propagates with the marginal stability velocity. For \ensuremath{\gamma}g(1/12, localized initial conditions may develop into fronts propagating at the marginal stability velocity, but such front solutions cannot be uniformly translating. Differences between the propagation of uniformly translating fronts \ensuremath{\varphi}(x-vt) and envelope fronts are pointed out, and a number of open problems, some of which could be studied numerically, are also discussed.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Journal ArticleDOI

Local and global instabilities in spatially developing flows

TL;DR: In this article, a review of recent developments in the hydro- dynamic stability theory of spatially developing flows pertaining to absolute/convective and local/global instability concepts is presented.
Journal ArticleDOI

Configurations of fluid membranes and vesicles

TL;DR: In this article, the authors describe the systematic physical theory developed to understand the static and dynamic aspects of membrane and vesicle configurations, and the preferred shapes arise from a competition between curvature energy which derives from the bending elasticity of the membrane, geometrical constraints such as fixed surface area and fixed enclosed volume, and a signature of the bilayer aspect.
Journal ArticleDOI

Front propagation into unstable states

TL;DR: In this paper, the authors present an introductory review of the problem of front propagation into unstable states, which is centered around the concept of the asymptotic linear spreading velocity v ∗, the rate with which initially localized perturbations spread into an unstable state according to the linear dynamical equations obtained by linearizing the fully nonlinear equations about the unstable state.
Journal Article

A Reaction-Diffusion Model of Cancer Invasion

TL;DR: In this paper, a reaction-diffusion model describing the spatial distribution and temporal development of tumor tissue, normal tissue, and excess H+ ion concentration is presented to predict a pH gradient extending from the tumor-host interface, which is confirmed by reanalysis of existing experimental data.