scispace - formally typeset
Open AccessJournal ArticleDOI

Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields

Reads0
Chats0
TLDR
In this article, the authors analyzed the interplanetary shock/electric field event of 5-6 November 2001 using GPS receiver data from CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite.
Abstract
The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from ~100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ~33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of ~54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was ~45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked ~2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a ~55-60% increase in equatorial ionospheric TEC to values above ~430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at ~1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is ~80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above ~430 km decreased to values ~45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was ~16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Dayside global ionospheric response to the major interplanetary events of October 29-30, 2003 Halloween Storms : Violent sun-earth connection events of October-November 2003

TL;DR: In this paper, the authors demonstrate extreme ionospheric response to the large interplanetary electric fields during the Halloween storms that occurred on October 29 and 30, 2003 within a few (2-5) hours of the time when the electric field impinged on the magnetopause, dayside total electron content increases of ∼40% and ∼250% are observed for the October 29, and 30 events, respectively during the Oct 30 event, ∼900% increases in electron content above the CHAMP satellite (∼400 km altitude).
Journal Article

Penetration of high latitude electric fields effects tolow latitude during Sundial 1984

TL;DR: In this article, electric field penetration events were identified using F-region vertical-drift measurements obtained in the October 6-13, 1984 period by Jicamarcan incoherent-backscatter radar and corresponding h-prime F measurements from ionosondes at Fortaleza, Cachoeira Paulista, and Dakar.
Journal ArticleDOI

Ionospheric response to the 2015 St. Patrick's Day storm: A global multi‐instrumental overview

TL;DR: In this article, the ionospheric response to the geomagnetic storm of 17-18 March 2015 (the St. Patrick's Day storm) that was up to now the strongest in the 24th solar cycle (minimum SYM-H value of A233 nT).
References
More filters
Journal ArticleDOI

What is a geomagnetic storm

TL;DR: In this article, an attempt is made to define a geomagnetic storm as an interval of time when a sufficiently intense and long-lasting interplanetary convection electric field leads, through a substantial energization in the magnetosphere-ionosphere system, to an intensified ring current sufficiently strong to exceed some key threshold of the quantifying storm time Dst index.
Journal ArticleDOI

A global mapping technique for GPS‐derived ionospheric total electron content measurements

TL;DR: In this paper, a technique for retrieving the global distribution of vertical total electron content (TEC) from GPS-based measurements is described, based on interpolating TEC within triangular tiles that tessellate the ionosphere modeled as a thin spherical shell.
Journal ArticleDOI

The ionospheric disturbance dynamo

TL;DR: In this article, a numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbance dynamo.
Book ChapterDOI

Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer

TL;DR: The solar wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced Composition Explorer (ACE) as discussed by the authors, which provides the context for elemental and isotopic composition measurements made on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation.
Journal ArticleDOI

Interplanetary magnetic clouds At 1 AU

TL;DR: The magnetic field geometry in such a magnetic cloud is consistent with that of a magnetic loop, but it cannot be determined uniquely as mentioned in this paper, but it is known that at least one cloud passed the earth every 3 months, and the average expansion speed was estimated to be of the order of half the ambient Alfven speed.
Related Papers (5)