scispace - formally typeset
Journal ArticleDOI

Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae).

Reads0
Chats0
TLDR
The results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes.
Abstract
Mosquitoes act as a vector for most of the life-threatening diseases like malaria, yellow fever, dengue fever, chikungunya fever, filariasis, encephalitis, West Nile Virus infection, etc. Under the Integrated Mosquito Management, emphasis was given on the application of alternative strategies in mosquito control. The continuous application of synthetic insecticides causes development of resistance in vector species, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and nontarget organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, the larvicidal activity of silver nanoparticles (AgNPs) synthesized using Sida acuta plant leaf extract against late third instar larvae of Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti was determined. Range of concentrations of synthesized AgNPs (10, 20, 30, 40, and 50 μg/mL) and aqueous leaf extract (50, 100, 150, 200, and 250 μg/mL) were tested against the larvae of C. quinquefasciatus, A. stephensi and A. aegypti. The synthesized AgNPs from S. acuta leaf were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV–Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Larvae were exposed to varying concentrations of aqueous crude extract and synthesized AgNPs for 24 h. Considerable mortality was evident after the treatment of S. acuta for all three important vector mosquitoes. The LC50 and LC90 values of S. acuta aqueous leaf extract appeared to be most effective against A. stephensi (LC50, 109.94 μg/mL and LC90, 202.42 μg/mL) followed by A. aegypti LC50 (119.32 μg/mL and LC90, 213.84 μg/mL) and C. quinquefasciatus (LC50, 130.30 μg/mL and LC90, 228.20 μg/mL). Synthesized AgNPs against the vector mosquitoes of A. stephensi, A. aegypti, and C. quinquefasciatus had the following LC50 and LC90 values: A. stephensi had LC50 and LC90 values of 21.92, and 41.07 μg/mL; A. aegypti had LC50 and LC90 values of 23.96, and 44.05 μg/mL; C. quinquefasciatus had LC50 and LC90 values of 26.13 and 47.52 μg/mL. These results suggest that the use of S. acuta synthesized silver nanoparticles can be a rapid, environmentally safer biopesticide which can form a novel approach to develop effective biocides for controlling the target vector mosquitoes. This is the first report on the mosquito larvicidal activity of the plant aqueous extract and synthesized nanoparticles.

read more

Citations
More filters
Journal ArticleDOI

Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review

TL;DR: This review focuses on characterization, effectiveness, and non-target effects of mosquitocidal nanoparticles synthesized using botanical products (mosquitocidal Nanoparticles, MNP), and particular attention was dedicated to this issue.
Journal ArticleDOI

Noble Metal Nanoparticles: Plant-Mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications

TL;DR: In this article, a review has focused on the various plant-mediated nanoparticle fabrication approaches, with brief discussions on the categories of various plant mediated synthesis approaches and mechanistic aspects of plant mediated nanoparticle synthesis.
Journal ArticleDOI

Biosynthesis of Silver Nanoparticles and Its Applications

TL;DR: In this paper, a critical review aimed at providing an insight into the phytomediated synthesis of silver nanoparticles, its significant applications in various fields, and characterization techniques involved.
Journal ArticleDOI

Mechanism of Larvicidal Activity of Antimicrobial Silver Nanoparticles Synthesized Using Garcinia mangostana Bark Extract

TL;DR: In this article, the authors used an inexpensive method for the synthesis of silver nanoparticles (AgNPs) using Garcinia mangostana bark, which was further characterized using scanning electron microscope for morphology and the elemental composition was detected via energy dispersive X-ray analysis.
Journal ArticleDOI

Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action.

TL;DR: This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants, and concludes that 29 of them have outstanding larvicidal activity against major vectors belonging to the genera Anopheles, Aedes and Culex.
References
More filters
Journal ArticleDOI

Surface Plasmon Spectroscopy of Nanosized Metal Particles

TL;DR: In this paper, the use of optical measurements to monitor electrochemical changes on the surface of nanosized metal particles is discussed within the Drude model, and the absorption spectrum of a metal sol in water is shown to be strongly affected by cathodic or anodic polarization, chemisorption, metal adatom deposition, and alloying.
Journal ArticleDOI

Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth.

TL;DR: The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.
Journal ArticleDOI

Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.

TL;DR: It is observed that the slow rate of the reaction along with the shape directing effect of the constituents of the extract are responsible for the formation of single crystalline gold nanotriangles.
Journal ArticleDOI

Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics

TL;DR: Variable leaching rates among sock types suggests that the sock manufacturing process may control the release of silver, and physical separation and ion selective electrode (ISE) analyses suggest that both colloidal and ionic silver leach from the socks.
Journal ArticleDOI

Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf

TL;DR: In this article, a sundried biomass of Cinnamomum camphora leaf with aqueous silver or gold precursors at ambient temperature was used for simple synthesis of nanoparticles.
Related Papers (5)