scispace - formally typeset

JournalISSN: 0021-9797

Journal of Colloid and Interface Science 

About: Journal of Colloid and Interface Science is an academic journal. The journal publishes majorly in the area(s): Adsorption & Micelle. It has an ISSN identifier of 0021-9797. Over the lifetime, 22675 publication(s) have been published receiving 826494 citation(s).


Papers
More filters
Journal ArticleDOI
Abstract: A system of chemical reactions has been developed which permits the controlled growth of spherical silica particles of uniform size by means of hydrolysis of alkyl silicates and subsequent condensation of silicic acid in alcoholic solutions. Ammonia is used as a morphological catalyst. Particle sizes obtained in suspension range from less than 0.05 μ to 2 μ in diameter.

11,882 citations

Journal ArticleDOI
TL;DR: These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.
Abstract: The antimicrobial activity of silver nanoparticles against E. coli was investigated as a model for Gram-negative bacteria. Bacteriological tests were performed in Luria-Bertani (LB) medium on solid agar plates and in liquid systems supplemented with different concentrations of nanosized silver particles. These particles were shown to be an effective bactericide. Scanning and transmission electron microscopy (SEM and TEM) were used to study the biocidal action of this nanoscale material. The results confirmed that the treated E. coli cells were damaged, showing formation of "pits" in the cell wall of the bacteria, while the silver nanoparticles were found to accumulate in the bacterial membrane. A membrane with such a morphology exhibits a significant increase in permeability, resulting in death of the cell. These nontoxic nanomaterials, which can be prepared in a simple and cost-effective manner, may be suitable for the formulation of new types of bactericidal materials.

4,790 citations

Journal ArticleDOI
Abstract: A strict theory of reciprocal influence of the contact deformation and molecular attraction of a ball and a plane has been developed. It has been shown that despite the van der Waals' forces being capable of increasing the elastic contact area between the ball and the plane, the force that is required to overcome the molecular forces arising when the contact is broken does not increase thereby. In fact, it remains equal to the attraction force value that is determined when considering the point contact of a nondeformed ball with a plane. In the absence of the electrostatic component, the adhesion force is equivalent to the first power of the ball radius and to the amount of work per unit area as required for effecting the equilibrium tearing-off of a flat surface of the same nature.

3,660 citations

Journal ArticleDOI
Abstract: We describe a set of image processing algorithms for extracting quantitative data from digitized video microscope images of colloidal suspensions. In a typical application, these direct imaging techniques can locate submicrometer spheres to within 10 nm in the focal plane and 150 nm in depth. Combining information from a sequence of video images into single-particle trajectories makes possible measurements of quantities of fundamental and practical interest such as diffusion coefficients and pair-wise interaction potentials. The measurements we describe in detail combine the outstanding resolution of digital imaging with video-synchronized optical trapping to obtain highly accurate and reproducible results very rapidly.

3,060 citations

Journal ArticleDOI
TL;DR: The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.
Abstract: We report on the use of Neem (Azadirachta indica) leaf broth in the extracellular synthesis of pure metallic silver and gold nanoparticles and bimetallic Au/Ag nanoparticles. On treatment of aqueous solutions of silver nitrate and chloroauric acid with Neem leaf extract, the rapid formation of stable silver and gold nanoparticles at high concentrations is observed to occur. The silver and gold nanoparticles are polydisperse, with a large percentage of gold particles exhibiting an interesting flat, platelike morphology. Competitive reduction of Au3+ and Ag+ ions present simultaneously in solution during exposure to Neem leaf extract leads to the synthesis of bimetallic Au core-Ag shell nanoparticles in solution. Transmission electron microscopy revealed that the silver nanoparticles are adsorbed onto the gold nanoparticles, forming a core-shell structure. The rates of reduction of the metal ions by Neem leaf extract are much faster than those observed by us in our earlier studies using microorganisms such as fungi, highlighting the possibility that nanoparticle biological synthesis methodologies will achieve rates of synthesis comparable to those of chemical methods.

2,081 citations

Network Information
Related Journals (5)
Langmuir

48.2K papers, 2.1M citations

93% related
ACS Applied Materials & Interfaces

41.1K papers, 1.4M citations

85% related
Journal of Physical Chemistry B

44.8K papers, 2.1M citations

85% related
Journal of Materials Chemistry

38.5K papers, 1.9M citations

84% related
Journal of Physical Chemistry C

46.8K papers, 1.5M citations

84% related
Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
2022665
20211,960
2020979
20191,049
2018672
2017741