scispace - formally typeset
Journal ArticleDOI

Hierarchical Semantic Graph Reasoning for Train Component Detection

- 01 Sep 2022 - 
- Vol. 33, Iss: 9, pp 4502-4514
TLDR
Cheng et al. as discussed by the authors proposed hierarchical graphical reasoning (HGR), which utilizes the hierarchical structures of trains for train component detection, which contains multiple graphical reasoning branches, each of which is utilized to conduct graphical reasoning for one cluster of train components based on their sizes.
Abstract
Recently, deep learning-based approaches have achieved superior performance on object detection applications. However, object detection for industrial scenarios, where the objects may also have some structures and the structured patterns are normally presented in a hierarchical way, is not well investigated yet. In this work, we propose a novel deep learning-based method, hierarchical graphical reasoning (HGR), which utilizes the hierarchical structures of trains for train component detection. HGR contains multiple graphical reasoning branches, each of which is utilized to conduct graphical reasoning for one cluster of train components based on their sizes. In each branch, the visual appearances and structures of train components are considered jointly with our proposed novel densely connected dual-gated recurrent units (Dense-DGRUs). To the best of our knowledge, HGR is the first kind of framework that explores hierarchical structures among objects for object detection. We have collected a data set of 1130 images captured from moving trains, in which 17 334 train components are manually annotated with bounding boxes. Based on this data set, we carry out extensive experiments that have demonstrated our proposed HGR outperforms the existing state-of-the-art baselines significantly. The data set and the source code can be downloaded online at <uri xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">https://github.com/ChengZY/HGR</uri> .

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Multi-Task Y-Shaped Graph Neural Network for Point Cloud Learning in Autonomous Driving

TL;DR: A novel multi-task Y-shaped graph neural network to explore 3D point clouds, referred to as MTYGNN, extends the conventional U-Net and considers the homoscedastic uncertainty of each task to calculate the weights of multiple loss functions to ensure that tasks do not negatively interfere with each other.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Proceedings ArticleDOI

Densely Connected Convolutional Networks

TL;DR: DenseNet as mentioned in this paper proposes to connect each layer to every other layer in a feed-forward fashion, which can alleviate the vanishing gradient problem, strengthen feature propagation, encourage feature reuse, and substantially reduce the number of parameters.
Proceedings ArticleDOI

You Only Look Once: Unified, Real-Time Object Detection

TL;DR: Compared to state-of-the-art detection systems, YOLO makes more localization errors but is less likely to predict false positives on background, and outperforms other detection methods, including DPM and R-CNN, when generalizing from natural images to other domains like artwork.
Journal ArticleDOI

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

TL;DR: This work introduces a Region Proposal Network (RPN) that shares full-image convolutional features with the detection network, thus enabling nearly cost-free region proposals and further merge RPN and Fast R-CNN into a single network by sharing their convolutionAL features.
Related Papers (5)