scispace - formally typeset
Journal ArticleDOI

High-order velocity structure functions in turbulent shear flows

TLDR
In this paper, moments of the velocity structure function up to the eighteenth order were calculated, primarily with a view to establish accurately the dependence on the order of the inertial range power-law exponent and to draw conclusions about the distribution of energy transfer in the Inertial range.
Abstract
Measurements are presented of the velocity structure function on the axis of a turbulent jet at Reynolds numbers Rλ ≤ 852 and in a turbulent duct flow at Rλ = 515. Moments of the structure function up to the eighteenth order were calculated, primarily with a view to establish accurately the dependence on the order of the inertial range power-law exponent and to draw conclusions about the distribution of energy transfer in the inertial range. Adequate definition of the probability density of the structure function was achieved only for moments of order n ≤ 10. It is shown, however, that, although the values of moments of n > 10 diverges from their true values, the dependence of the moment of the structure function on the separation r is still given to a fair accuracy for moments up to n ≈ 18. The results demonstrate that the inertial-range power-law exponent is closely approximated by a quadratic dependence on the power which for lower-order moments (n [lsim ] 12) would be consistent with a lognormal distribution. Higher-order moments diverge, however, from a lognormal distribution, which gives weight to Mandelbrot's (1971) conjecture that ‘Kolmogorov's third hypothesis’ is untenable in the strict sense. The intermittency parameter μ, appearing in the power-law exponent, has been determined from sixth-order moments 〈(δμ)6〉 ∼ r2−μ to be μ = 0.2 ± 0.05. This value coincides with that determined from non-centred dissipation correlations measured in identical conditions.

read more

Citations
More filters
Journal ArticleDOI

Pattern formation outside of equilibrium

TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Journal ArticleDOI

Interstellar Turbulence I: Observations and Processes

TL;DR: In this article, a two-part review summarizes the observations, theory, and simulations of interstellar turbulence and their implications for many fields of astrophysics, including basic fluid equations, solenoidal and compressible modes, global inviscid quadratic invariants, scaling arguments for the power spectrum, phenomenological models for the scaling of higher-order structu...
Journal ArticleDOI

The phenomenology of small-scale turbulence

TL;DR: In this article, the authors survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, and intermittency models, and the structure and kinematics of small-scale structure.
Journal ArticleDOI

Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes

TL;DR: In this paper, the basic properties of rain and cloud fields (particularly their scaling and intermittency) are best understood in terms of coupled (anisotropic and scaling) cascade processes.
Journal ArticleDOI

Passive Scalars in Turbulent Flows

TL;DR: In this article, the complex morphology of the scalar field is reviewed, and they are related to the intermittency problem and other aspects of passive scalar behavior such as spectrum, probability density function, flux, and variance are also addressed.
References
More filters
Book

A First Course in Turbulence

TL;DR: In this paper, the authors present a reference record created on 2005-11-18, modified on 2016-08-08 and used for the analysis of turbulence and transport in the context of energie.
MonographDOI

Turbulent Transport of Momentum and Heat

TL;DR: In this article, the authors discuss the Reynolds equations and estimate of the Reynolds stress in the kinetic theory of gases, and describe the effects of shear flow near a rigid wall.
MonographDOI

The Statistical Description of Turbulence

TL;DR: In this article, the probability density, Fourier transforms and characteristic functions, joint statistics and statistical independence, Correlation functions and spectra, the central limit theorem, and the relation functions are discussed.
Journal ArticleDOI

A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number

TL;DR: Kolmogorov and Oboukhov as discussed by the authors investigated the local structure of turbulence at high Reynolds number, based on Richardson's idea of the existence in the turbulent flow of vortices on all possible scales.
Related Papers (5)