scispace - formally typeset
Open AccessPosted Content

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Reads0
Chats0
TLDR
This work proposes a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections, and proposes a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels.
Abstract
Convolutional neural network (CNN) depth is of crucial importance for image super-resolution (SR). However, we observe that deeper networks for image SR are more difficult to train. The low-resolution inputs and features contain abundant low-frequency information, which is treated equally across channels, hence hindering the representational ability of CNNs. To solve these problems, we propose the very deep residual channel attention networks (RCAN). Specifically, we propose a residual in residual (RIR) structure to form very deep network, which consists of several residual groups with long skip connections. Each residual group contains some residual blocks with short skip connections. Meanwhile, RIR allows abundant low-frequency information to be bypassed through multiple skip connections, making the main network focus on learning high-frequency information. Furthermore, we propose a channel attention mechanism to adaptively rescale channel-wise features by considering interdependencies among channels. Extensive experiments show that our RCAN achieves better accuracy and visual improvements against state-of-the-art methods.

read more

Citations
More filters
Proceedings ArticleDOI

Second-Order Attention Network for Single Image Super-Resolution

TL;DR: Experimental results demonstrate the superiority of the SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.
Posted Content

ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks

TL;DR: This work thoroughly study three key components of SRGAN – network architecture, adversarial loss and perceptual loss, and improves each of them to derive an Enhanced SRGAN (ESRGAN), which achieves consistently better visual quality with more realistic and natural textures than SRGAN.
Journal ArticleDOI

Deep Learning for Image Super-Resolution: A Survey

TL;DR: A survey on recent advances of image super-resolution techniques using deep learning approaches in a systematic way, which can roughly group the existing studies of SR techniques into three major categories: supervised SR, unsupervised SR, and domain-specific SR.
Posted Content

Pre-Trained Image Processing Transformer

TL;DR: To maximally excavate the capability of transformer, the IPT model is presented to utilize the well-known ImageNet benchmark for generating a large amount of corrupted image pairs and the contrastive learning is introduced for well adapting to different image processing tasks.
Proceedings ArticleDOI

Learning Texture Transformer Network for Image Super-Resolution

TL;DR: A novel Texture Transformer Network for Image Super-Resolution (TTSR), in which the LR and Ref images are formulated as queries and keys in a transformer, respectively, which achieves significant improvements over state-of-the-art approaches on both quantitative and qualitative evaluations.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

Adam: A Method for Stochastic Optimization

TL;DR: This work introduces Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments, and provides a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework.
Journal ArticleDOI

Image quality assessment: from error visibility to structural similarity

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.
Proceedings Article

Rectified Linear Units Improve Restricted Boltzmann Machines

TL;DR: Restricted Boltzmann machines were developed using binary stochastic hidden units that learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset.
Related Papers (5)