scispace - formally typeset
Open AccessJournal ArticleDOI

Improvement of Arbuscular Mycorrhiza Development by Inoculation of Soil with Phosphate-Solubilizing Rhizobacteria To Improve Rock Phosphate Bioavailability ((sup32)P) and Nutrient Cycling.

M. Toro, +2 more
- 01 Nov 1997 - 
- Vol. 63, Iss: 11, pp 4408-4412
TLDR
It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants.
Abstract
The interactive effect of phosphate-solubilizing bacteria and arbuscular mycorrhizal (AM) fungi on plant use of soil P sources of low bioavailability (endogenous or added as rock phosphate [RP] material) was evaluated by using soil microcosms which integrated (sup32)P isotopic dilution techniques. The microbial inocula consisted of the AM fungus Glomus intraradices and two phosphate-solubilizing rhizobacterial isolates: Enterobacter sp. and Bacillus subtilis. These rhizobacteria behaved as "mycorrhiza helper bacteria" promoting establishment of both the indigenous and the introduced AM endophytes despite a gradual decrease in bacterial population size, which dropped from 10(sup7) at planting to 10(sup3) CFU g(sup-1) of dry rhizosphere soil at harvest. Dual inoculation with G. intraradices and B. subtilis significantly increased biomass and N and P accumulation in plant tissues. Regardless of the rhizobacterium strain and of the addition of RP, AM plants displayed lower specific activity ((sup32)P/(sup31)P) than their comparable controls, suggesting that the plants used P sources not available in their absence. The inoculated rhizobacteria may have released phosphate ions ((sup31)P), either from the added RP or from the less-available indigenous P sources, which were effectively taken up by the external AM mycelium. Soluble Ca deficiency in the test soil may have benefited P solubilization. At least 75% of the P in dually inoculated plants derived from the added RP. It appears that these mycorrhizosphere interactions between bacterial and fungal plant associates contributed to the biogeochemical P cycling, thus promoting a sustainable nutrient supply to plants.

read more

Citations
More filters
Journal ArticleDOI

Plant growth promoting rhizobacteria as biofertilizers

TL;DR: This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Journal ArticleDOI

Phosphate solubilizing bacteria and their role in plant growth promotion

TL;DR: Genetic manipulation of phosphate-solubilizing bacteria to improve their ability to improve plant growth may include cloning genes involved in both mineral and organic phosphate solubilization, followed by their expression in selected rhizobacterial strains.
Journal ArticleDOI

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

TL;DR: Features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen.
Journal ArticleDOI

Microbial co-operation in the rhizosphere

TL;DR: This article summarizes and discusses significant aspects of this general topic, including the analysis of the key activities carried out by the diverse trophic and functional groups of micro-organisms involved in co-operative rhizosphere interactions; a critical discussion of the direct microbe-microbe interactions which results in processes benefiting sustainable agro-ecosystem development.
Journal ArticleDOI

The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility

TL;DR: This review discusses the mechanism by which benefits are conferred through abiotic and biotic interactions in the rhizosphere of arbuscular mycorrhizal fungi and has had an impact in landscape regeneration, horticulture, alleviation of desertification and in the bioremediation of contaminated soils.
References
More filters
Journal ArticleDOI

Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.

TL;DR: To improve stain penetration and clearing in whole mycorrhizal roots of onion and other host plants, and in roots infected by other fungi, the following two procedures are developed, which give deeply stained fungal structures which show distinctly against the outlines of the cells in the cortex of intact roots.
Journal ArticleDOI

An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots

TL;DR: The standard error of four methods of assessment based on observations of stained root samples either randomly arranged in a petri dish or mounted on microscope slides are calculated.
Journal ArticleDOI

The enhancement of plant growth by free-living bacteria

TL;DR: The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed and the possibility of improving plant growth promotion by specific genetic manipulation is critically examined.
Journal ArticleDOI

A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants

TL;DR: Mycorrhizal plants have been shown to increase the uptake of poorly soluble P sources, such as iron and aluminium phosphate and rock phosphates, however, studies in which the soil P has been labelled with radioactive 32P indicated that both mycor rhizal and non-mycorrhIZal plants utilized the similarly labelled P sources in soil.
Book ChapterDOI

Mycorrhizas in Natural Ecosystems

TL;DR: This chapter discusses the ecological implications of mycorrhizal associations in natural ecosystems and the role of soil or environmental factors, mycorRhizal fungus characteristics or host plant properties, as well as the population ecology of my corollary fungi and the influence of their associations on plant population ecology.
Related Papers (5)