scispace - formally typeset
Open AccessJournal ArticleDOI

Microbial co-operation in the rhizosphere

Reads0
Chats0
TLDR
This article summarizes and discusses significant aspects of this general topic, including the analysis of the key activities carried out by the diverse trophic and functional groups of micro-organisms involved in co-operative rhizosphere interactions; a critical discussion of the direct microbe-microbe interactions which results in processes benefiting sustainable agro-ecosystem development.
Abstract
Soil microbial populations are immersed in a framework of interactions known to affect plant fitness and soil quality. They are involved in fundamental activities that ensure the stability and productivity of both agricultural systems and natural ecosystems. Strategic and applied research has demonstrated that certain co-operative microbial activities can be exploited, as a low-input biotechnology, to help sustainable, environmentally-friendly, agro-technological practices. Much research is addressed at improving understanding of the diversity, dynamics, and significance of rhizosphere microbial populations and their cooperative activities. An analysis of the co-operative microbial activities known to affect plant development is the general aim of this review. In particular, this article summarizes and discusses significant aspects of this general topic, including (i) the analysis of the key activities carried out by the diverse trophic and functional groups of micro-organisms involved in cooperative rhizosphere interactions; (ii) a critical discussion of the direct microbe–microbe interactions which results in processes benefiting sustainable agroecosystem development; and (iii) beneficial microbial interactions involving arbuscular mycorrhiza, the omnipresent fungus–plant beneficial symbiosis. The trends of this thematic area will be outlined, from molecular biology and ecophysiological issues to the biotechnological developments for integrated management, to indicate where research is needed in the future.

read more

Citations
More filters
Journal ArticleDOI

Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture

TL;DR: The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.
Journal ArticleDOI

Biofortification of crops with seven mineral elements often lacking in human diets--iron, zinc, copper, calcium, magnesium, selenium and iodine.

TL;DR: In this paper, the authors review aspects of soil science, plant physiology and genetics underpinning crop bio-fortification strategies, as well as agronomic and genetic approaches currently taken to biofortify food crops with the mineral elements most commonly lacking in human diets: iron (Fe), zinc (Zn), copper (Cu), calcium (Ca), magnesium (Mg), iodine (I) and selenium (Se).
Journal ArticleDOI

Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

TL;DR: The latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.
Journal ArticleDOI

Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

TL;DR: Features of the rhizosphere that are important for nutrient acquisition from soil are reviewed, with specific emphasis on the characteristics of roots that influence the availability and uptake of phosphorus and nitrogen.
Journal ArticleDOI

Regulation and function of root exudates.

TL;DR: This review focuses on compiling the information available on the regulation and mechanisms of root exudation processes, and provides some ideas related to the evolutionary role ofRoot exudates in shaping soil microbial communities.
References
More filters
Journal ArticleDOI

Plant growth promoting rhizobacteria as biofertilizers

TL;DR: This review focuses on the known, the putative, and the speculative modes-of-action of PGPR, which include fixing N2, increasing the availability of nutrients in the rhizosphere, positively influencing root growth and morphology, and promoting other beneficial plant–microbe symbioses.
Journal ArticleDOI

A Molecular View of Microbial Diversity and the Biosphere

TL;DR: Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya.
Journal ArticleDOI

The enhancement of plant growth by free-living bacteria

TL;DR: The ways in which plant growth promoting rhizobacteria facilitate the growth of plants are considered and discussed and the possibility of improving plant growth promotion by specific genetic manipulation is critically examined.
Journal ArticleDOI

Systemic resistance induced by rhizosphere bacteria

TL;DR: Rhizobacteria-mediated induced systemic resistance (ISR) is effective under field conditions and offers a natural mechanism for biological control of plant disease.
Related Papers (5)