scispace - formally typeset
Open AccessJournal ArticleDOI

INDELible: a flexible simulator of biological sequence evolution.

William Fletcher, +1 more
- 01 Aug 2009 - 
- Vol. 26, Iss: 8, pp 1879-1888
Reads0
Chats0
TLDR
A portable and flexible application for generating nucleotide, amino acid and codon sequence data by simulating insertions and deletions (indels) as well as substitutions, which should be useful for evaluating the performance of many inference methods, including those for multiple sequence alignment, phylogenetic tree inference, and ancestral sequence, or genome reconstruction.
Abstract
Many methods exist for reconstructing phylogenies from molecular sequence data, but few phylogenies are known and can be used to check their efficacy. Simulation remains the most important approach to testing the accuracy and robustness of phylogenetic inference methods. However, current simulation programs are limited, especially concerning realistic models for simulating insertions and deletions. We implement a portable and flexible application, named INDELible, for generating nucleotide, amino acid and codon sequence data by simulating insertions and deletions (indels) as well as substitutions. Indels are simulated under several models of indel-length distribution. The program implements a rich repertoire of substitution models, including the general unrestricted model and nonstationary nonhomogeneous models of nucleotide substitution, mixture, and partition models that account for heterogeneity among sites, and codon models that allow the nonsynonymous/synonymous substitution rate ratio to vary among sites and branches. With its many unique features, INDELible should be useful for evaluating the performance of many inference methods, including those for multiple sequence alignment, phylogenetic tree inference, and ancestral sequence, or genome reconstruction.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

TL;DR: This version of MAFFT has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update.
Journal ArticleDOI

ModelFinder: fast model selection for accurate phylogenetic estimates

TL;DR: ModelFinder is presented, a fast model-selection method that greatly improves the accuracy of phylogenetic estimates by incorporating a model of rate heterogeneity across sites not previously considered in this context and by allowing concurrent searches of model space and tree space.
Journal ArticleDOI

Evolution of Protein Molecules

Journal ArticleDOI

A general species delimitation method with applications to phylogenetic placements

TL;DR: The Poisson tree processes (PTP) model is introduced to infer putative species boundaries on a given phylogenetic input tree and yields more accurate results than de novo species delimitation methods.
Journal ArticleDOI

ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees.

TL;DR: ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up to 10,000 species and removes low support branches from gene trees, resulting in improved accuracy.
References
More filters
Journal ArticleDOI

A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.

TL;DR: Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
Journal ArticleDOI

Evolutionary trees from DNA sequences: A maximum likelihood approach

TL;DR: A computationally feasible method for finding such maximum likelihood estimates is developed, and a computer program is available that allows the testing of hypotheses about the constancy of evolutionary rates by likelihood ratio tests.
Journal ArticleDOI

Exact Stochastic Simulation of Coupled Chemical Reactions

TL;DR: In this article, a simulation algorithm for the stochastic formulation of chemical kinetics is proposed, which uses a rigorously derived Monte Carlo procedure to numerically simulate the time evolution of a given chemical system.
Journal ArticleDOI

Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees.

TL;DR: In this paper, a new mathematical method for estimating the number of transitional and transversional substitutions per site, as well as the total number of nucleotide substitutions was proposed, taking into account excess transitions, unequal nucleotide frequencies, and variation of substitution rate among different sites.
Related Papers (5)