scispace - formally typeset
Journal ArticleDOI

Indentation size effects in crystalline materials: A law for strain gradient plasticity

William D. Nix, +1 more
- 01 Mar 1998 - 
- Vol. 46, Iss: 3, pp 411-425
TLDR
In this article, the indentation size effect for crystalline materials can be accurately modeled using the concept of geometrically necessary dislocations, which leads to the following characteristic form for the depth dependence of the hardness: H H 0 1+ h ∗ h where H is the hardness for a given depth of indentation, h, H 0 is a characteristic length that depends on the shape of the indenter, the shear modulus and H 0.
Abstract
We show that the indentation size effect for crystalline materials can be accurately modeled using the concept of geometrically necessary dislocations. The model leads to the following characteristic form for the depth dependence of the hardness: H H 0 1+ h ∗ h where H is the hardness for a given depth of indentation, h, H0 is the hardness in the limit of infinite depth and h ∗ is a characteristic length that depends on the shape of the indenter, the shear modulus and H0. Indentation experiments on annealed (111) copper single crystals and cold worked polycrystalline copper show that this relation is well-obeyed. We also show that this relation describes the indentation size effect observed for single crystals of silver. We use this model to derive the following law for strain gradient plasticity: ( σ σ 0 ) 2 = 1 + l χ , where σ is the effective flow stress in the presence of a gradient, σ0 is the flow stress in the absence of a gradient, χ is the effective strain gradient and l a characteristic material length scale, which is, in turn, related to the flow stress of the material in the absence of a strain gradient, l ≈ b( μ σ 0 ) 2 . For materials characterized by the power law σ 0 = σ ref e 1 n , the above law can be recast in a form with a strain-independent material length scale l. ( builtσ σ ref ) 2 = e 2 n + l χ l = b( μ σ ref ) 2 = l ( σ 0 σ ref ) 2 . This law resembles the phenomenological law developed by Fleck and Hutchinson, with their phenomenological length scale interpreted in terms of measurable material parametersbl].

read more

Citations
More filters
Journal ArticleDOI

Size and plasticity effects in zirconia micropillars compression

TL;DR: In this paper, the role of size in the deformation behavior of polycrystalline tetragonal zirconia micropillars and macroscopic specimens under compression was investigated.
Journal ArticleDOI

On the Finite Element implementation of higher-order gradient plasticity, with focus on theories based on plastic distortion incompatibility

TL;DR: In this paper, the authors consider work-conjugate gradient plasticity (GP) theories involving both energetic and dissipative higher-order contributions and show that the conceptually most straightforward Finite Element (FE) implementation, in which the displacement components and the relevant plastic distortion contributions are employed as nodal degrees of freedom, leads to a very efficient Backward-Euler FE algorithm if a proper viscoplastic potential is adopted.
Journal ArticleDOI

Optimal stress and deformation partition in gradient materials for better strength and tensile ductility: A numerical investigation

TL;DR: It is revealed that the yielding strength of polycrystalline metals with gradient grain size can be significantly enhanced at no reduction in ductility.
Journal ArticleDOI

Indentation size effect in nickel and cobalt laser clad coatings

TL;DR: In this paper, the authors reported a comparative study of the indentation response at different length scales in nickel and cobalt samples produced by laser cladding, in the load range 57μN to 2N.
References
More filters
Journal ArticleDOI

The deformation of plastically non-homogeneous materials

TL;DR: The geometrically necessary dislocations as discussed by the authors were introduced to distinguish them from the statistically storages in pure crystals during straining and are responsible for the normal 3-stage hardening.
Journal ArticleDOI

Strain gradient plasticity: Theory and experiment

TL;DR: In this paper, a deformation theory of plasticity is introduced to represent in a phenomenological manner the relative roles of strain hardening and strain gradient hardening, which is a non-linear generalization of Cosserat couple stress theory.
Journal ArticleDOI

A phenomenological theory for strain gradient effects in plasticity

TL;DR: In this paper, a strain gradient theory of plasticity is introduced, based on the notion of statistically stored and geometrically necessary dislocations, which fits within the general framework of couple stress theory and involves a single material length scale l.
Related Papers (5)