scispace - formally typeset
Open AccessJournal ArticleDOI

Junctions between intimately apposed cell membranes in the vertebrate brain

Milton W. Brightman, +1 more
- 01 Mar 1969 - 
- Vol. 40, Iss: 3, pp 648-677
TLDR
Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.
Abstract
Certain junctions between ependymal cells, between astrocytes, and between some electrically coupled neurons have heretofore been regarded as tight, pentalaminar occlusions of the intercellular cleft. These junctions are now redefined in terms of their configuration after treatment of brain tissue in uranyl acetate before dehydration. Instead of a median dense lamina, they are bisected by a median gap 20–30 A wide which is continuous with the rest of the interspace. The patency of these "gap junctions" is further demonstrated by the penetration of horseradish peroxidase or lanthanum into the median gap, the latter tracer delineating there a polygonal substructure. However, either tracer can circumvent gap junctions because they are plaque-shaped rather than complete, circumferential belts. Tight junctions, which retain a pentalaminar appearance after uranyl acetate block treatment, are restricted primarily to the endothelium of parenchymal capillaries and the epithelium of the choroid plexus. They form rows of extensive, overlapping occlusions of the interspace and are neither circumvented nor penetrated by peroxidase and lanthanum. These junctions are morphologically distinguishable from the "labile" pentalaminar appositions which appear or disappear according to the preparative method and which do not interfere with the intercellular movement of tracers. Therefore, the interspaces of the brain are generally patent, allowing intercellular movement of colloidal materials. Endothelial and epithelial tight junctions occlude the interspaces between blood and parenchyma or cerebral ventricles, thereby constituting a structural basis for the blood-brain and blood-cerebrospinal fluid barriers.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Structure and function of the blood–brain barrier

TL;DR: The structure and function of the BBB is summarised, the physical barrier formed by the endothelial tight junctions, and the transport barrier resulting from membrane transporters and vesicular mechanisms are described.
Journal ArticleDOI

The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders

TL;DR: These findings support developments of new therapeutic approaches for chronic neurodegenerative disorders directed at the blood-brain barrier and other nonneuronal cells of the neurovascular unit.
Journal ArticleDOI

The Blood-Brain Barrier/Neurovascular Unit in Health and Disease

TL;DR: Understanding how BBB TJ might be affected by various factors holds significant promise for the prevention and treatment of neurological diseases.
Journal ArticleDOI

Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction

TL;DR: During stimulation the intracellular compartments of this synapse change shape and take up extracellular protein in a manner which indicates that synaptic vesicle membrane added to the surface during exocytosis is retrieved by coated vesicles and recycled into new synaptic vESicles by way of intermediate cisternae.
Journal ArticleDOI

The Blood–Brain Barrier

TL;DR: Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
References
More filters
Journal ArticleDOI

The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique.

TL;DR: The early stages of absorption of intravenously injected horseradish peroxidase in proximal tubules of mouse kidney were studied with a new ultrastructural cytochemical technique, which gives sharp localization and is sensitive to protein transport.
Journal ArticleDOI

Junctional complexes in various epithelia

TL;DR: The tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal," and the desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
Journal ArticleDOI

Fine structural localization of a blood-brain barrier to exogenous peroxidase

TL;DR: These findings localize, at a fine structural level, a "barrier" to the passage of peroxidase at the endothelium of vessels in the cerebral cortex in mice, particularly with reference to a recent study in which similar techniques were applied to capillaries in heart and skeletal muscle.
Related Papers (5)