scispace - formally typeset
Proceedings ArticleDOI

Learning to fly by crashing

Reads0
Chats0
TLDR
This paper builds a drone whose sole purpose is to crash into objects: it samples naive trajectories and crashes into random objects to create one of the biggest UAV crash dataset.
Abstract
How do you learn to navigate an Unmanned Aerial Vehicle (UAV) and avoid obstacles? One approach is to use a small dataset collected by human experts: however, high capacity learning algorithms tend to overfit when trained with little data. An alternative is to use simulation. But the gap between simulation and real world remains large especially for perception problems. The reason most research avoids using large-scale real data is the fear of crashes! In this paper, we propose to bite the bullet and collect a dataset of crashes itself! We build a drone whose sole purpose is to crash into objects: it samples naive trajectories and crashes into random objects. We crash our drone 11,500 times to create one of the biggest UAV crash dataset. This dataset captures the different ways in which a UAV can crash. We use all this negative flying data in conjunction with positive data sampled from the same trajectories to learn a simple yet powerful policy for UAV navigation. We show that this simple self-supervised model is quite effective in navigating the UAV even in extremely cluttered environments with dynamic obstacles including humans. For supplementary video see:

read more

Citations
More filters
Journal ArticleDOI

Deep Reinforcement Learning for Drone Delivery

TL;DR: Reinforcement learning for drone delivery shows that, in comparison with the previous results, the new algorithms have better results, not only with a better reward, but also with a reduction of its variance.
Posted Content

Semantic Visual Navigation by Watching YouTube Videos

TL;DR: This paper learns and leverages semantic cues for navigating to objects of interest in novel environments, by simply watching YouTube videos, and improves upon end-to-end RL methods by 66%, while using 250x fewer interactions.
Posted Content

Ultra Low Power Deep-Learning-powered Autonomous Nano Drones

TL;DR: This work presents the first vertically integrated system for fully autonomous deep neural network-based navigation on nano-size UAVs, based on GAP8, a novel parallel ultra-low-power computing platform, and deployed on a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor.
Posted Content

Learning Instance Segmentation by Interaction

TL;DR: In this article, an active agent that learns to segment its visual observations into individual objects by interacting with its environment in a completely self-supervised manner is presented. And the agent uses its current segmentation model to infer pixels that constitute objects and refines the segmentation models by interaction with these pixels.
Posted Content

Continual Learning for Robotics

TL;DR: This paper aims at reviewing the existing state of the art of continual learning, summarizing existing benchmarks and metrics, and proposing a framework for presenting and evaluating both robotics and non robotics approaches in a way that makes transfer between both fields easier.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Journal ArticleDOI

Human-level control through deep reinforcement learning

TL;DR: This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
Proceedings ArticleDOI

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation

TL;DR: RCNN as discussed by the authors combines CNNs with bottom-up region proposals to localize and segment objects, and when labeled training data is scarce, supervised pre-training for an auxiliary task, followed by domain-specific fine-tuning, yields a significant performance boost.
Posted Content

Rich feature hierarchies for accurate object detection and semantic segmentation

TL;DR: This paper proposes a simple and scalable detection algorithm that improves mean average precision (mAP) by more than 30% relative to the previous best result on VOC 2012 -- achieving a mAP of 53.3%.
Proceedings ArticleDOI

Parallel Tracking and Mapping for Small AR Workspaces

TL;DR: A system specifically designed to track a hand-held camera in a small AR workspace, processed in parallel threads on a dual-core computer, that produces detailed maps with thousands of landmarks which can be tracked at frame-rate with accuracy and robustness rivalling that of state-of-the-art model-based systems.
Related Papers (5)