scispace - formally typeset
Open AccessBook

Markov Random Field Modeling in Image Analysis

TLDR
This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimisation.
Abstract
Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables systematic development of optimal vision algorithms when used with optimization principles. This detailed and thoroughly enhanced third edition presents a comprehensive study / reference to theories, methodologies and recent developments in solving computer vision problems based on MRFs, statistics and optimisation. It treats various problems in low- and high-level computational vision in a systematic and unified way within the MAP-MRF framework. Among the main issues covered are: how to use MRFs to encode contextual constraints that are indispensable to image understanding; how to derive the objective function for the optimal solution to a problem; and how to design computational algorithms for finding an optimal solution. Easy-to-follow and coherent, the revised edition is accessible, includes the most recent advances, and has new and expanded sections on such topics as: Discriminative Random Fields (DRF) Strong Random Fields (SRF) Spatial-Temporal Models Total Variation Models Learning MRF for Classification (motivation + DRF) Relation to Graphic Models Graph Cuts Belief Propagation Features: Focuses on the application of Markov random fields to computer vision problems, such as image restoration and edge detection in the low-level domain, and object matching and recognition in the high-level domain Presents various vision models in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation Uses a variety of examples to illustrate how to convert a specific vision problem involving uncertainties and constraints into essentially an optimization problem under the MRF setting Introduces readers to the basic concepts, important models and various special classes of MRFs on the regular image lattice and MRFs on relational graphs derived from images Examines the problems of parameter estimation and function optimization Includes an extensive list of references This broad-ranging and comprehensive volume is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It has been class-tested and is suitable as a textbook for advanced courses relating to these areas.

read more

Citations
More filters
Journal ArticleDOI

Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising

TL;DR: Zhang et al. as mentioned in this paper proposed a feed-forward denoising convolutional neural networks (DnCNNs) to handle Gaussian denobling with unknown noise level.

Image change detectio algorithms : A systematic survey

R. J. Radke
TL;DR: A systematic survey of the common processing steps and core decision rules in modern change detection algorithms, including significance and hypothesis testing, predictive models, the shading model, and background modeling is presented.
Journal ArticleDOI

Computer and Robot Vision

TL;DR: Computer and Robot Vision Vol.
Journal ArticleDOI

A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces: A 10-year Update

TL;DR: A comprehensive overview of the modern classification algorithms used in EEG-based BCIs is provided, the principles of these methods and guidelines on when and how to use them are presented, and a number of challenges to further advance EEG classification in BCI are identified.
Journal ArticleDOI

Deep learning for computational biology

TL;DR: This review discusses applications of this new breed of analysis approaches in regulatory genomics and cellular imaging, and provides background of what deep learning is, and the settings in which it can be successfully applied to derive biological insights.
References
More filters
Book

Genetic algorithms in search, optimization, and machine learning

TL;DR: In this article, the authors present the computer techniques, mathematical tools, and research results that will enable both students and practitioners to apply genetic algorithms to problems in many fields, including computer programming and mathematics.
Journal ArticleDOI

A new look at the statistical model identification

TL;DR: In this article, a new estimate minimum information theoretical criterion estimate (MAICE) is introduced for the purpose of statistical identification, which is free from the ambiguities inherent in the application of conventional hypothesis testing procedure.
Journal ArticleDOI

Optimization by Simulated Annealing

TL;DR: There is a deep and useful connection between statistical mechanics and multivariate or combinatorial optimization (finding the minimum of a given function depending on many parameters), and a detailed analogy with annealing in solids provides a framework for optimization of very large and complex systems.

Estimating the dimension of a model

TL;DR: In this paper, the problem of selecting one of a number of models of different dimensions is treated by finding its Bayes solution, and evaluating the leading terms of its asymptotic expansion.
Journal ArticleDOI

A Computational Approach to Edge Detection

TL;DR: There is a natural uncertainty principle between detection and localization performance, which are the two main goals, and with this principle a single operator shape is derived which is optimal at any scale.
Related Papers (5)