scispace - formally typeset
Book ChapterDOI

Midori: A Block Cipher for Low Energy

TLDR
This paper presents the block cipher Midorii¾?, the Japanese translation for the word Green, that is optimized with respect to the energy consumed by the circuit per bt in encryption or decryption operation, and proposes two energy-efficient block ciphers Midori128i½?and Midori64i¼?
Abstract
In the past few years, lightweight cryptography has become a popular research discipline with a number of ciphers and hash functions proposed. The designers' focus has been predominantly to minimize the hardware area, while other goals such as low latency have been addressed rather recently only. However, the optimization goal of low energy for block cipher design has not been explicitly addressed so far. At the same time, it is a crucial measure of goodness for an algorithm. Indeed, a cipher optimized with respect to energy has wide applications, especially in constrained environments running on a tight power/energy budget such as medical implants. This paper presents the block cipher Midorii¾?The name of the cipher is the Japanese translation for the word Green. that is optimized with respect to the energy consumed by the circuit per bt in encryption or decryption operation. We deliberate on the design choices that lead to low energy consumption in an electrical circuit, and try to optimize each component of the circuit as well as its entire architecture for energy. An added motivation is to make both encryption and decryption functionalities available by small tweak in the circuit that would not incur significant area or energy overheads. We propose two energy-efficient block ciphers Midori128i¾?and Midori64i¾?with block sizes equal to 128 and 64 bits respectively. These ciphers have the added property that a circuit that provides both the functionalities of encryption and decryption can be designed with very little overhead in terms of area and energy. We compare our results with other ciphers with similar characteristics: it was found that the energy consumptions ofi¾?Midori64i¾? and Midori128i¾? are by far better when compared ciphers like PRINCE and NOEKEON.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS

TL;DR: A new tweakable block cipher family SKINNY is presented, whose goal is to compete with NSA recent design SIMON in terms of hardware/software performances, while proving in addition much stronger security guarantees with regards to differential/linear attacks.
Book ChapterDOI

GIFT : A Small Present

TL;DR: In this article, the authors revisited the design strategy of PRESENT, leveraging all the advances provided by the research community in construction and cryptanalysis since its publication, to push the design up to its limits.
Journal ArticleDOI

Lightweight Cryptography: A Solution to Secure IoT

TL;DR: A thorough study on the lightweight cryptography as a solution to the security problem of resource-constrained devices in IoT has been presented and it can be observed that AES and ECC are the most suitable for used lightweight cryptographic primitives.
Proceedings Article

GIFT: A Small Present Towards Reaching the Limit of Lightweight Encryption

TL;DR: An improved version of PRESENT is obtained, named GIFT, that provides a much increased efficiency in all domains (smaller and faster), while correcting the well-known weakness of PRES present with regards to linear hulls.
Journal ArticleDOI

Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Review, Comparison and Research Opportunities

TL;DR: In this article, the authors have compared the existing algorithms in terms of implementation cost, hardware and software performances and attack resistance properties and discussed the demand and a direction for new research in the area of lightweight cryptography to optimize balance amongst cost, performance and security.
References
More filters
Book

The Design of Rijndael: AES - The Advanced Encryption Standard

TL;DR: The underlying mathematics and the wide trail strategy as the basic design idea are explained in detail and the basics of differential and linear cryptanalysis are reworked.
Book ChapterDOI

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: An ultra-lightweight block cipher, present, which is competitive with today's leading compact stream ciphers and suitable for extremely constrained environments such as RFID tags and sensor networks.
BookDOI

The Design of Rijndael

TL;DR: This volume is the authoritative guide to the Rijndael algorithm and AES and professionals, researchers, and students active or interested in data encryption will find it a valuable source of information and reference.
Journal Article

PRESENT: An Ultra-Lightweight Block Cipher

TL;DR: In this paper, the authors describe an ultra-lightweight block cipher, present, which is suitable for extremely constrained environments such as RFID tags and sensor networks, but it is not suitable for very large networks such as sensor networks.
Book ChapterDOI

The LED block cipher

TL;DR: This work considers the resistance of ciphers, and LED in particular, to related-key attacks, and is able to derive simple yet interesting AES-like security proofs for LED regarding related- or single- key attacks.
Related Papers (5)