scispace - formally typeset
Open AccessDissertationDOI

Modeling and design for future wireless cellular networks: coverage, rate, and security

He Wang
Reads0
Chats0
TLDR
A non-uniform femtocell deployment scheme is proposed, in which femto cell BSs are not utilized if they are located close to any macrocell BSs, which can provide remarkable improvements on both coverage and data rate.
Abstract
Accompanied by the wide penetration of smartphones and other personal mobile devices in recent years, the foremost demand for cellular communications has been transformed from offering subscribers a way to communicate through low data rate voice call connections initially, into providing connectivity with good coverage, high data rate, as well as strong security for sensitive data transmission. To satisfy the demands for improved coverage and data rate, the cellular network is undergoing a significant transition from conventional macrocell-only deployment to heterogeneous network (HetNet), in which a multitude of radio access technologies can be co-deployed intelligently and flexibly. However, the small cells newly introduced in HetNet, such as picocells and femtocells, have complicated the network topology and the interference environment, thus presenting new challenges in network modeling and design. In recent studies, performance analyses were carried out accurately and tractably with the help of Poisson point process (PPP)-based base station (BS) model. This PPP-based model is extended in this work with the impact of directional antennas taken into account. The significance of this extension is emphasized by the wide usage of directional antennas in sectorized macrocell cells. Moreover, studies showed that little coverage improvement can be achieved if small cells are randomly deployed in a uniform-distributed way. This fact inspires us to explore the effect of the non-uniform BS deployment. We propose a non-uniform femtocell deployment scheme, in which femtocell BSs are not utilized if they are located close to any macrocell BSs. Based upon our analytical framework, this scheme can provide remarkable improvements on both coverage and data rate, thus stressing the importance of selectively deploying femtocell BSs by considering their relative locations with macrocell BSs. To alleviate the severe interference problem, the uplink attenuation technique is frequently employed in femtocell receivers to reduce the impact of interference

read more

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article

On the capacity of a cellular CDMA system

TL;DR: It is concluded that properly augmented and power-controlled multiple-cell CDMA (code division multiple access) promises a quantum increase in current cellular capacity.

Spatial tessellations. Concepts and Applications of Voronoi diagrams

TL;DR: In this paper, the Voronoi diagram generalizations of the Voroni diagram algorithm for computing poisson Voroni diagrams are defined and basic properties of the generalization of Voroni's algorithm are discussed.
References
More filters
Book

Wireless Communications

Proceedings Article

Wireless communications

TL;DR: This book aims to provide a chronology of key events and individuals involved in the development of microelectronics technology over the past 50 years and some of the individuals involved have been identified and named.
Journal ArticleDOI

Handbook of Mathematical Functions with Formulas

D. B. Owen
- 01 Feb 1965 - 
TL;DR: The Handbook of Mathematical Functions with Formulas (HOFF-formulas) as mentioned in this paper is the most widely used handbook for mathematical functions with formulas, which includes the following:
Journal ArticleDOI

The wire-tap channel

TL;DR: This paper finds the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission, and implies that there exists a Cs > 0, such that reliable transmission at rates up to Cs is possible in approximately perfect secrecy.
Book

Stochastic Geometry and Its Applications

TL;DR: Random Closed Sets I--The Boolean Model. Random Closed Sets II--The General Case.
Related Papers (5)